From the given rate of effusion of two gases, molar mass of the unknown gas should be determined. Concept introduction: Effusion is used to describe the passage of a gas through a tiny particle into an evacuated chamber. The rate of effusion is the measure speed at which the gas is transferred to the chamber. According to Thomas Graham the rate of effusion of a gas is inversely proportional to the square root of the mass of its particles. The relative rate of effusion of two gases at the same temperature and pressure are the inverse ratio of the square root of the masses of the gases particles. That is, R a t e o f e f f u s i o n f o r g a s 1 R a t e o f e f f u s i o n f o r g a s 2 = M 2 M 1 o r R a t e 1 R a t e 2 = ( M 2 M 1 ) 1 / 2 M 1 and M 2 are the molar masses of twogases This equation is known as Graham’s law of effusion.
From the given rate of effusion of two gases, molar mass of the unknown gas should be determined. Concept introduction: Effusion is used to describe the passage of a gas through a tiny particle into an evacuated chamber. The rate of effusion is the measure speed at which the gas is transferred to the chamber. According to Thomas Graham the rate of effusion of a gas is inversely proportional to the square root of the mass of its particles. The relative rate of effusion of two gases at the same temperature and pressure are the inverse ratio of the square root of the masses of the gases particles. That is, R a t e o f e f f u s i o n f o r g a s 1 R a t e o f e f f u s i o n f o r g a s 2 = M 2 M 1 o r R a t e 1 R a t e 2 = ( M 2 M 1 ) 1 / 2 M 1 and M 2 are the molar masses of twogases This equation is known as Graham’s law of effusion.
Solution Summary: The author explains that the molar mass of the unknown gas should be determined from the given rate of effusion of two gases.
Interpretation: From the given rate of effusion of two gases, molar mass of the unknown gas should be determined.
Concept introduction:
Effusion is used to describe the passage of a gas through a tiny particle into an evacuated chamber.
The rate of effusion is the measure speed at which the gas is transferred to the chamber.
According to Thomas Graham the rate of effusion of a gas is inversely proportional to the square root of the mass of its particles.
The relative rate of effusion of two gases at the same temperature and pressure are the inverse ratio of the square root of the masses of the gases particles. That is,
using dimensional analysis convert 15.28 lb/gallon to mg/mL
using dimensional analysis convert 0.00685 km to micrometers
What are the major products of the following reaction?
Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.