For the given two gaseous containers at constant pressure, temperature and volume, number of moles of each gas should be determined. Concept introduction: By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law . According to ideal gas law, PV=nRT Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0 .08206L×atm/K×mol ) T = temperature in kelvins By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation. For a gas at two conditions, the unknown variable can be determined by knowing the variables that change and remain constant and can be generated an equation for unknown variable from ideal gas equation.
For the given two gaseous containers at constant pressure, temperature and volume, number of moles of each gas should be determined. Concept introduction: By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law . According to ideal gas law, PV=nRT Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0 .08206L×atm/K×mol ) T = temperature in kelvins By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation. For a gas at two conditions, the unknown variable can be determined by knowing the variables that change and remain constant and can be generated an equation for unknown variable from ideal gas equation.
Solution Summary: The author explains that by combining the three gaseous laws, the state of a gas can be identified by applying the ideal gas equation.
Definition Definition Number of atoms/molecules present in one mole of any substance. Avogadro's number is a constant. Its value is 6.02214076 × 10 23 per mole.
Chapter 5, Problem 12ALQ
Interpretation Introduction
Interpretation: For the given two gaseous containers at constant pressure, temperature and volume, number of moles of each gas should be determined.
Concept introduction:
By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law.
According to ideal gas law,
PV=nRT
Where,
P = pressure in atmospheres
V= volumes in liters
n = number of moles
R =universal gas constant (
0.08206L×atm/K×mol)
T = temperature in kelvins
By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation. For a gas at two conditions, the unknown variable can be determined by knowing the variables that change and remain constant and can be generated an equation for unknown variable from ideal gas equation.
An essential part of the experimental design process is to select appropriate dependent and
independent variables.
True
False
10.00 g of Compound X with molecular formula C₂Hg are burned in a constant-pressure calorimeter containing 40.00 kg of water at 25 °C. The temperature of
the water is observed to rise by 2.604 °C. (You may assume all the heat released by the reaction is absorbed by the water, and none by the calorimeter itself.)
Calculate the standard heat of formation of Compound X at 25 °C.
Be sure your answer has a unit symbol, if necessary, and round it to the correct number of significant digits.
need help not sure what am doing wrong step by step please answer is 971A
During the lecture, we calculated the Debye length at physiological salt concentrations and temperature, i.e. at an ionic strength of 150 mM (i.e. 0.150 mol/l) and a temperature of T=310 K. We predicted that electrostatic interactions are effectively screened beyond distances of 8.1 Å in solutions with a physiological salt concentration.
What is the Debye length in a sample of distilled water with an ionic strength of 10.0 µM (i.e. 1.00 * 10-5 mol/l)? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.