The molar enthalpy of combustion, fuel value and percentage of hydrogen by mass of the given hydrocarbons is to be calculated; also the relationship between hydrogen content and the fuel value is to be determined. Concept Introduction: The molar enthalpy change of the given reaction is calculated by the difference of sum of the enthalpy change of products and reactants. The fuel value of the given hydrocarbons is calculated by dividing its molar enthalpy of combustion by the molar mass. The percentage hydrogen content of the hydrocarbon is calculated by dividing the molar mass of hydrogen in the given hydrocarbon by the molar mass of hydrocarbon and multiplying the resultant value by 100 . (a) To determine: The molar enthalpy of combustion for the given hydrocarbons.
The molar enthalpy of combustion, fuel value and percentage of hydrogen by mass of the given hydrocarbons is to be calculated; also the relationship between hydrogen content and the fuel value is to be determined. Concept Introduction: The molar enthalpy change of the given reaction is calculated by the difference of sum of the enthalpy change of products and reactants. The fuel value of the given hydrocarbons is calculated by dividing its molar enthalpy of combustion by the molar mass. The percentage hydrogen content of the hydrocarbon is calculated by dividing the molar mass of hydrogen in the given hydrocarbon by the molar mass of hydrocarbon and multiplying the resultant value by 100 . (a) To determine: The molar enthalpy of combustion for the given hydrocarbons.
Interpretation: The molar enthalpy of combustion, fuel value and percentage of hydrogen by mass of the given hydrocarbons is to be calculated; also the relationship between hydrogen content and the fuel value is to be determined.
Concept Introduction: The molar enthalpy change of the given reaction is calculated by the difference of sum of the enthalpy change of products and reactants.
The fuel value of the given hydrocarbons is calculated by dividing its molar enthalpy of combustion by the molar mass. The percentage hydrogen content of the hydrocarbon is calculated by dividing the molar mass of hydrogen in the given hydrocarbon by the molar mass of hydrocarbon and multiplying the resultant value by 100 .
(a)
To determine: The molar enthalpy of combustion for the given hydrocarbons.
Step 1:
Interpretation Introduction
To determine: The molar enthalpy of combustion of 1,3-butadiene.
Step 2:
Interpretation Introduction
To determine: The molar enthalpy of combustion of 1-butene.
Step 3:
Interpretation Introduction
To determine: The molar enthalpy of combustion of n-butane.
(b)
Interpretation Introduction
To determine: The fuel value of the given hydrocarbons.
Step 1:
Interpretation Introduction
To determine: The fuel value of 1,3-butadiene.
Step 2:
Interpretation Introduction
To determine: The fuel value of 1-butene.
Step 3:
Interpretation Introduction
To determine: The fuel value of n-butane.
(c)
Interpretation Introduction
To determine: The percentage of hydrogen by mass in the given hydrocarbons.
Step 1:
Interpretation Introduction
To determine: The percentage of hydrogen by mass of 1,3-butadiene.
Step 2:
Interpretation Introduction
To determine: The percentage of hydrogen by mass of 1-butene.
Step 3:
Interpretation Introduction
To determine: The percentage of hydrogen by mass of n-butane.
(d)
Interpretation Introduction
To determine: The relationship between hydrogen content and the fuel value of given hydrocarbons.
Shown below are five NMR spectra for five different C6H10O2 compounds. For each spectrum, draw the structure of the compound, and assign the spectrum by labeling H's in your structure (or in a second drawing of the structure) with the chemical shifts of the corresponding signals (which can be estimated to nearest 0.1 ppm). IR information is also provided. As a reminder, a peak near 1700 cm-1 is consistent with the presence of a carbonyl (C=O), and a peak near 3300 cm-1 is consistent with the presence of an O–H.
Extra information: For C6H10O2 , there must be either 2 double bonds, or 1 triple bond, or two rings to account for the unsaturation. There is no two rings for this problem.
A strong band was observed in the IR at 1717 cm-1
Predict the major products of the organic reaction below.
: ☐
+
Х
ك
OH
1. NaH
2. CH₂Br
Click and drag to start
drawing a structure.
NG
NC
15Show all the steps you would use to synthesize the following products shown below using
benzene and any organic reagent 4 carbons or less as your starting material in addition to
any inorganic reagents that you have learned.
NO 2
NC
SO3H
NO2
OH
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY