A company must decide which type of machine to buy, and how many units of that type, given the following information:
Product demand and processing times for the equipment are:
a. How many machines of each type would be required to handle demand if the machines will operate 8 hours a day, 250 days a year, and what annual capacity cushion in processing time would result for each?
b. With high certainty of annual demand, which type of machine would be chosen if that was an important consideration?
c. If purchasing and operating costs are taken into account, which type of machine would minimize total costs, given your answer for part a? Operating costs are $6/hr for type 1 and $5/hr for type 2.
a)
To determine: The number of machines of each type required to handle the demand and its capacity.
Introduction: Capacity planning is the process of planning the required production output based on the requirement or the demand that is predicted.
Answer to Problem 10P
Explanation of Solution
Given information:
A company should decide whether to buy machine of type 1 or type 2. The cost of type 1 machine is $10,000 and the cost of type 2 machine is $14,000.
Annual demand and processing unit is given as follows for each product:
Product | Annual demand | Processing time per minute | |
Type 1 | Type 2 | ||
001 | 12,000 | 4 | 6 |
002 | 10,000 | 9 | 9 |
003 | 18,000 | 5 | 3 |
Determine the number of machines of each type required and its capacity:
It is given that the machines will operate 60 minutes per hour, 8 hours per day and 250 days per year.
Determine the minutes available for machine type 1:
It is calculated by multiplying number of days per year, hours per day, and minutes per hour. Hence, the available minutes per year for machine type 1 is 120,000 minutes per year.
Determine the processing requirement of product 001 using machine type 1:
It is calculated by multiplying annual demand of product 001 and the processing time per unit on type 1. Hence, the processing requirements of product 001 using machine type 1 is 48,000 minutes.
Determine the processing requirement of product 002 using machine type 1:
It is calculated by multiplying annual demand of product 002 and the processing time per unit on type 1. Hence, the processing requirements of product 002 using machine type 1 is 90,000 minutes.
Determine the processing requirement of product 003 using machine type 1:
It is calculated by multiplying annual demand of product 003 and the processing time per unit on type 1. Hence, the processing requirements of product 003 using machine type 1 is 90,000 minutes.
Determine the total processing requirement using machine type 1:
It is calculated by adding the processing requirement of all the products. Hence, the total processing requirement using machine type 1 is 228,000 minutes.
Determine the needed number of machine type 1:
It is calculated by dividing the total processing requirement and available minutes for machine type 1. Hence, the needed number of machine type 1is 2 machines.
Determine the capacity of the machines:
It is calculated by multiplying the number of machine type 1 needed and the available minutes for machine type 1. Hence, the capacity of the machine is 240,000 minutes.
Determine the capacity cushion:
It is calculated by subtracting total processing requirement from capacity of machines.
Determine the minutes available for machine type 2:
It is calculated by multiplying number of days per year, hours per day, and minutes per hour. Hence, the available minutes per year for machine type 2 is 120,000 minutes per year.
Determine the processing requirement of product 001 using machine type 2:
It is calculated by multiplying annual demand of product 001 and the processing time per unit on type 2. Hence, the processing requirements of product 001 using machine type 2 is 72,000 minutes.
Determine the processing requirement of product 002 using machine type 2:
It is calculated by multiplying annual demand of product 002 and the processing time per unit on type 2. Hence, the processing requirements of product 002 using machine type 2 is 90,000 minutes.
Determine the processing requirement of product 003 using machine type 2:
It is calculated by multiplying annual demand of product 003 and the processing time per unit on type 2. Hence, the processing requirements of product 003 using machine type 2 is 54,000 minutes.
Determine the total processing requirement using machine type 2:
It is calculated by adding the processing requirement of all the products. Hence, the total processing requirement using machine type 2 is 216,000 minutes.
Determine the needed number of machine type 2:
It is calculated by dividing the total processing requirement and available minutes for machine type 2. Hence, the needed number of machine type 2 is 2 machines.
Determine the capacity of the machines:
It is calculated by multiplying the number of machine type 2 needed and the available minutes for machine type 2. Hence, the capacity of the machine is 240,000 minutes.
Determine the capacity cushion:
It is calculated by subtracting total processing requirement from capacity of machines.
b)
To determine: The machine type that can be chosen for the high and low certainty of demand.
Introduction: Capacity planning is the process of planning the required production output based on the requirement or the demand that is predicted.
Answer to Problem 10P
Explanation of Solution
Given information:
A company should decide whether to buy machine of type 1 or type 2. The cost of type 1 machine is $10,000 and the cost of type 2 machine is $14,000.
Annual demand and processing unit is given as follows for each product:
Product | Annual demand | Processing time per minute | |
Type 1 | Type 2 | ||
001 | 12,000 | 4 | 6 |
002 | 10,000 | 9 | 9 |
003 | 18,000 | 5 | 3 |
Determine the machine type that can be chosen for the high and low certainty of demand:
The machine with the high capacity cushion should be selected, if the firm faced high certainty of annual demand. hence, machine type 2 should be selected.
The machine with the low capacity cushion should be selected, if the firm faced low certainty of annual demand. hence, machine type 1 should be selected.
c)
To determine: The machine type that would minimize the total cost, if purchasing and operating costs are considered.
Introduction: Capacity planning is the process of planning the required production output based on the requirement or the demand that is predicted.
Answer to Problem 10P
Explanation of Solution
Given information:
A company should decide whether to buy machine of type 1 or type 2. The cost of type 1 machine is $10,000 and the cost of type 2 machine is $14,000.
Annual demand and processing unit is given as follows for each product:
Product | Annual demand | Processing time per minute | |
Type 1 | Type 2 | ||
001 | 12,000 | 4 | 6 |
002 | 10,000 | 9 | 9 |
003 | 18,000 | 5 | 3 |
Operating cost is given as $6 per hour for type 1 and $5 per hour for type 2.
Determine the purchase cost for machine type 1:
It is calculated by multiplying the number of machines and cost of type 1 machine. Hence, the purchase cost for machine type 1 is $20,000.
Determine the total operating time for machine type 1:
Total operating time is the total processing requirement. It is calculated by adding the processing requirement of all the products. Hence, the total processing requirement using machine type 1 is 228,000 minutes.
Determine the total operating cost:
Total operating cost is calculated by multiplying the total operating time and the operating cost per hour. Hence, the total operating cost is $22,800.
Determine the total cost:
It is calculated by adding the purchasing cost of machine type 1 and total operating cost. Hence, the total cost is $42,800.
Determine the purchase cost for machine type 2:
It is calculated by multiplying the number of machines and cost of type 2 machine. Hence, the purchase cost for machine type 2 is $28,000.
Determine the total processing requirement using machine type 2:
Total operating time is the total processing requirement. It is calculated by adding the processing requirement of all the products. Hence, the total processing requirement using machine type 2 is 216,000 minutes.
Determine the total operating cost:
Total operating cost is calculated by multiplying the total operating time and the operating cost per hour. Hence, the total operating cost is $18,000.
Determine the total cost:
It is calculated by adding the purchasing cost of machine type 2 and total operating cost. Hence, the total cost is $46,000.
Hence, Machine type 1 would minimize the total cost.
Want to see more full solutions like this?
Chapter 5 Solutions
EBK OPERATIONS MANAGEMENT
- What is an example of a cover letter for a Christian School Long-Term Substitute Teaching position?arrow_forwardThe supply chain is a conventional notion, but organizations are only really interested in making products that they can sell to customers. Provided they have reliable supplies of materials and reasonable transport for finished products, logistics is irrelevant. Do you think this is true? If yes, explain, and if no, clearly explain as well.arrow_forwardworking as a program operations managerarrow_forward
- 12 X1, X230 1 x =0x2 write the Following linear Programming model by 1- general Form Canonical Forms Canonical formY 2- Standard Form Max Z=35X+ 4 X 2 +6 X3 ST. X+2X2-5x3 = 40 3X, + 6X2 + 7x 3 = 30 7x, +lox2 x3 = 50 X3 X 2 X 3 <0arrow_forwarda/ a Minimum cost assign each worker for one job at Jobs J1 12 33 WI 2 4 6 W2 5 W3 5 33 6 7arrow_forwardوبة واضافة هذه القيمة الى القيم Ex: Assign each job for each worker at minimum total Cost عمل لكل عامل وبأقل كلفة ممكنة obs الأعمال Workors العمال J1 J2 J3 J4 W₁ 15 13 14 12 W2 11 12 15 13 W3 13 12 10 11 W4 15 17 14 16arrow_forward
- The average completion time (flow time) for the sequence developed using the FCFS rule = 11.75 days (round your response to two decimal places). The percentage utilization for the sequence developed using the FCFS rule = 42.55 % (enter your response as a percentage rounded to two decimal places). b) Using the SPT (shortest processing time) decision rule for sequencing the jobs, the order is (to resolve a tie, use the order in which the jobs were received): An Alabama lumberyard has four jobs on order, as shown in the following table. Today is day 205 on the yard's schedule. In what sequence would the jobs be ranked according to the decision rules on the left: Job Due Date A 212 B 209 C 208 D 210 Duration (days) 6 3 3 8 Sequence 1 Job B 2 3 4 A D The average tardiness (job lateness) for the sequence developed using the SPT rule = 5.00 days (round your response to two decimal places). The average completion time (flow time) for the sequence developed using the SPT rule = 10.25 days…arrow_forwardWith the aid of examples, fully discuss any five (5) political tactics used in organisations.arrow_forwarda. With the aid of examples, define discrimination. b. Fully discuss any four (4) types of discrimination in the workplacearrow_forward
- Read the Following Extract and Answer the Questions that Follows:The word politics has a somewhat negative connotation. It suggests that someone is attempting touse means or to gain ends that are not sanctioned by the organisation. Political behaviour, as we’vedefined it is quite neutral. Similarly, power is not inherently negative. Whether a person viewspower and politics as unsavoury topics depends on several considerations, most important perhapsbeing where the individual stands on a specific issue in each situation. Nonetheless, most managersare reluctant to admit to political character of their own work settings.Discuss any Five (5) Political tactics you know.arrow_forwardDescribe current features of Cigna Accredo pharmacy own appraisal forms and compare the system used against the textbook’s description of desirable features of appraisal forms. What improvements would you recommend and why?arrow_forwardProvide a recommendation of a combination of different methods of performance data that could be used to arrive at an overall score for each person being rated in cigna Accredo pharmacy. Explain the comprehensive system you have recommended and why you have chosen this combination of tools. Support your answer with research.arrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,