Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 46, Problem 71CP
(a)
To determine
The age of universe in terms of hubble’s constant.
(b)
To determine
The value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assume the average density of the Universe is equal to the critical density. (a) Prove that the age of the Universe is given by 2/(3H). (b) Calculate 2/(3H) and express it in years.
Suppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y ?
(b) How many cubic meters of water is this?
(c) If the actual lifetime is 1033 y , how long would you have to wait on an average to see a single proton decay?
Edwin Hubble observed that the light from very distant galaxies was redshifted and that the farther away a galaxy was, the greater its redshift. What does this say about very distant galaxies?
When Hubble first estimated the Hubble constant, galaxy distances were still very uncertain, and he got a value for H of about 600 km/s per Mpc. What would this have implied about the age of the universe?
What problems would this have presented for cosmologists?
Chapter 46 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 46.2 - Prob. 46.1QQCh. 46.5 - Prob. 46.3QQCh. 46.5 - Prob. 46.4QQCh. 46.8 - Prob. 46.5QQCh. 46.8 - Prob. 46.6QQCh. 46 - Prob. 1OQCh. 46 - Prob. 2OQCh. 46 - Prob. 3OQCh. 46 - Prob. 4OQCh. 46 - Prob. 5OQ
Ch. 46 - Prob. 6OQCh. 46 - Prob. 7OQCh. 46 - Prob. 8OQCh. 46 - Prob. 1CQCh. 46 - Prob. 2CQCh. 46 - Prob. 3CQCh. 46 - Prob. 4CQCh. 46 - Prob. 5CQCh. 46 - Prob. 6CQCh. 46 - Prob. 7CQCh. 46 - Prob. 8CQCh. 46 - Prob. 9CQCh. 46 - Prob. 10CQCh. 46 - Prob. 11CQCh. 46 - Prob. 12CQCh. 46 - Prob. 13CQCh. 46 - Prob. 1PCh. 46 - Prob. 2PCh. 46 - Prob. 3PCh. 46 - Prob. 4PCh. 46 - Prob. 5PCh. 46 - Prob. 6PCh. 46 - Prob. 7PCh. 46 - Prob. 8PCh. 46 - Prob. 9PCh. 46 - Prob. 10PCh. 46 - Prob. 11PCh. 46 - Prob. 12PCh. 46 - Prob. 13PCh. 46 - Prob. 14PCh. 46 - Prob. 15PCh. 46 - Prob. 16PCh. 46 - Prob. 17PCh. 46 - Prob. 18PCh. 46 - Prob. 19PCh. 46 - Prob. 20PCh. 46 - Prob. 21PCh. 46 - Prob. 22PCh. 46 - Prob. 23PCh. 46 - Prob. 24PCh. 46 - Prob. 25PCh. 46 - Prob. 26PCh. 46 - Prob. 27PCh. 46 - Prob. 28PCh. 46 - Prob. 29PCh. 46 - Prob. 30PCh. 46 - Prob. 31PCh. 46 - Prob. 32PCh. 46 - Prob. 33PCh. 46 - Prob. 34PCh. 46 - Prob. 35PCh. 46 - Prob. 36PCh. 46 - Prob. 37PCh. 46 - Prob. 38PCh. 46 - Prob. 39PCh. 46 - Prob. 40PCh. 46 - Prob. 41PCh. 46 - Prob. 42PCh. 46 - Prob. 43PCh. 46 - Prob. 44PCh. 46 - The various spectral lines observed in the light...Ch. 46 - Prob. 47PCh. 46 - Prob. 48PCh. 46 - Prob. 49PCh. 46 - Prob. 50PCh. 46 - Prob. 51APCh. 46 - Prob. 52APCh. 46 - Prob. 53APCh. 46 - Prob. 54APCh. 46 - Prob. 55APCh. 46 - Prob. 56APCh. 46 - Prob. 57APCh. 46 - Prob. 58APCh. 46 - An unstable particle, initially at rest, decays...Ch. 46 - Prob. 60APCh. 46 - Prob. 61APCh. 46 - Prob. 62APCh. 46 - Prob. 63APCh. 46 - Prob. 64APCh. 46 - Prob. 65APCh. 46 - Prob. 66APCh. 46 - Prob. 67CPCh. 46 - Prob. 68CPCh. 46 - Prob. 69CPCh. 46 - Prob. 70CPCh. 46 - Prob. 71CPCh. 46 - Prob. 72CPCh. 46 - Prob. 73CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose that the universe were full of spherical objects, each of mass m and radius r . If the objects were distributed uniformly throughout the universe, what number density (#/m3) of spherical objects would be required to make the density equal to the critical density of our Universe? Values: m = 4 kg r = 0.0407 m Answer must be in scientific notation and include zero decimal places (1 sig fig --- e.g., 1234 should be written as 1*10^3)arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y ?(b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y , how long would you have to wait on anaverage to see a single proton decay?arrow_forwardThe energy density ϵ in radiation is related to its temperature by ϵ=αT4. Compute the temperature when the Universe was 0.1 second old, using the Friedmann equation and its radiation-dominated solution a(t)∝t1/2.arrow_forward
- The Friedmann equation in a matter-dominated universe with curvature is given by 87G -pR² – k , 3 where R is the scale factor, p is the matter densi, and k is a positive constant. Demonstrate that the parametric solution 4G po 4тG Po R(0) (1 – cos 0) 3 k and t( (e – sin 0) 3 k3/2 solves this equation, where 0 is a variable that runs from 0 to 27 and the present-day scale factor is set to Ro = 1. %3Darrow_forwardThe time before which we don’t know what happened in the universe (10-43 s) is called the Planck time. The theory needed is a quantum theory of gravity and concerns the three fundamental constants h, G, and c. (a) Use dimensional analysis to determine the exponents m, n, l if the Planck time tP = hmGncl . (b) Calculate the Planck time using the expression you found in (a).arrow_forwardThe explosive energy of a ton of TNT is 4.184*109 Joules, according to Google. A megaton of TNT is a million times that. According to Wikipedia, the Tsar Bomba (Links to an external site.) was the most powerful thermonuclear weapon ever exploded, at 50 megatons of TNT. (For comparison, the explosive energy of WWII nuclear bombs was about 20 kilotons.) Suppose one kg of antimatter came into contact with matter. How would the explosive energy compare with the explosive energy of the Tsar Bomba? (c = 3 * 108 m/s) Group of answer choices 1.There is no way to compare the two. 2.The kg of antimatter would produce at least a hundred times more energy. 3.The Tsar Bomba produced at least a hundred times more energy than the kg of antimatter. 4. They would be approximately the same.arrow_forward
- The lifetime of a muon is 2.20 ?s. If you measured its mass to be 105.7 MeV/c2, what would be the minimum (Heisenberg) uncertainty in this value? Sketch the situation, defining all of your variablesarrow_forwardA state-of-the-art proton decay experiment is expected to detect 47% of the proton decays in a body of water. Assuming protons have a lifetime of 1031 years, how many m3 of water would you need in order to see 2 decays per month? (Assume a "month" is one-twelfth of a year.)arrow_forwardTwo independent measurements are made of the lifetime of a charmed strange meson.Eachmeasurement has a standard deviation of 6.6x 10-15 seconds. The lifetime of the meson is estimatedby averaging the two measurements. What is the standard deviation of this estimate?arrow_forward
- The photons that make up the cosmic microwave background were emitted about 380,000 years after the Big Bang. Today, 13.8billion years after the Big Bang, the wavelengths of these photons have been stretched by a factor of about 1100 since they were emitted because lengths in the expanding universe have increased by that same factor of about 1100. Consider a cubical region of empty space in today’s universe 1.00 m on a side, with a volume of 1.00 m3. What was the length s0 of each side and the volume V0 of this same cubical region 380,000 years after the Big Bang? s0 = ? m V0 = ? m^3 Today the average density of ordinary matter in the universe is about 2.4×10−27 kg/m3. What was the average density ?(rho)0 of ordinary matter at the time that the photons in the cosmic microwave background radiation were emitted? (rho)0 = ? kg/m^3arrow_forwardScientists are conducting an experiment to determine if their hypothesis that a certain constant in the universe is 1.65. the uncertainties in the experiment result in a relative uncertainty of no more than 2%. After several experimental trials, the scientists obtained an average value of 1.7 for the constant. What can be said about the scientists hypothesis? Hint calculate the percent error and compare it to the relative uncertainty.arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water.If the actual lifetime is 1033 y , how long would you have to wait on an average to see a single proton decay?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College