Concept explainers
(a)
Find the wavelength of the sodium line emitted from the galaxy
(a)
Answer to Problem 47P
The wavelength of the sodium line emitted from the galaxy
Explanation of Solution
A sodium line is emitted from the galaxy
Write the formula Hubble’s law
Write the formula for wavelength [relativistic Doppler effect]
Here,
Conclusion:
Substitute
The recessional velocity is
Substitute
Thus, the wavelength of the sodium line emitted from the galaxy
(b)
Find the wavelength of the sodium line emitted from the galaxy
(b)
Answer to Problem 47P
The wavelength of the sodium line emitted from the galaxy
Explanation of Solution
A sodium line is emitted from the galaxy
Conclusion:
Substitute
The recessional velocity is
Substitute
Thus, the wavelength of the sodium line emitted from the galaxy
(c)
Find the wavelength of the sodium line emitted from the galaxy
(c)
Answer to Problem 47P
The wavelength of the sodium line emitted from the galaxy
Explanation of Solution
A sodium line is emitted from the galaxy
Conclusion:
Substitute
The recessional velocity is
Substitute
Thus, the wavelength of the sodium line emitted from the galaxy
Want to see more full solutions like this?
Chapter 46 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- A galaxy moving away from the earth has a speed of 0.0100c. What wavelength do we observe for an ni =7 to nf =2 transition for hydrogen in that galaxy?arrow_forwardIn vacuum, the H-alpha line has a rest-frame wavelength of 656.461 nm. You took a spectrum of the center of a galaxy at an observatory on the ground and measured a wavelength of 656.65 nm for the H-alpha line. What is the radial velocity of the galaxy relative to the observer [km/s]? Note that the index of refraction of air is 1.0003 at that wavelength. As a result, the rest-frame wavelength of the H-alpha line in air differs from the rest-frame wavelength in vacuum.arrow_forwardNear the center of our galaxy, hydrogen gas is moving directly away from us in its orbit about a black hole. We receive electromagnetic radiation of wavelength 1908 nm and know that it was 1875 nm when emitted by the hydrogen gas.Randomized Variablesλ = 1908 nm What is the ratio of the speed of the gas to the speed of light?arrow_forward
- The rest-frame (natural) Wavelength of the H-a line of hydrogen is 656.3 nm. In the spectrum of light from a galaxy we observe, it is shifted to 763.8 nm. Calculate the reccession speed of the galaxy in m/s.arrow_forwardThe geometry of spacetime in the Universe on large scales is determined by the mean energy density of the matter in the Universe, ρ. The critical density of the Universe is denoted by ρ0 and can be used to define the parameter Ω0 = ρ/ρ0. Describe the geometry of space when: (i) Ω0 < 1; (ii) Ω0 = 1; (iii) Ω0 > 1. Explain how measurements of the angular sizes of the hot- and cold-spots in the CMB projected on the sky can inform us about the geometry of spacetime in our Universe. What do measurements of these angular sizes by the WMAP and PLANCK satellites tell us about the value of Ω0?arrow_forwardNear the center of our galaxy, hydrogen gas is moving directly away from us in its orbit about a black hole. We receive electromagnetic radiation of wavelength 1888 nm and know that it was 1875 nm when emitted by the hydrogen gas. Randomized Variablesλ = 1888 nm What is the ratio of the speed of the gas to the speed of light?arrow_forward
- An electron in a hydrogen atom has a speed about the proton of 2.2x10° m/s. the relativistic and Newtonian values of kinetic energy will be differ by... 0.0055 % O 0.0078% O 0.0034% O 0.0087%arrow_forwardThe muon is a heavier relative of the electron; it is unstable, as we’ve seen. The tauon is an even heavier relative of the muon and the electron, with a half-life of only 2.9 x 10-13 s. A tauon is moving through a detector at 0.999c. If the tauon lives for one half-life, how far will it travel through the detector before decaying?arrow_forwardThe peak intensity of the CMBR occurs at a wavelength of 1.1 mm. (a) What is the energy in eV of a 1.1-mm photon? (b) There are approximately 109 photons for each massive particle in deep space. Calculate the energy of 109 such photons. (c) If the average massive particle in space has a mass half that of a proton, what energy would be created byconverting its mass to energy? (d) Does this imply that space is “matter dominated”? Explain briefly.arrow_forward
- A muon is a short-lived particle. Muons are created by cosmic rays; they can also be created by particle accelerators. The muon is similar to an electron but has a larger mass: mμ ≈ 200me. During its brief lifetime, a muon can combine with a proton to create a system that is similar to atomic hydrogen called a muonic hydrogen atom. The larger mass of the muon makes some of the assumptions of the Bohr hydrogen atom treatment less accurate, but using the mathematics of the Bohr hydrogen atom to analyze this system will give approximate results that allow us to understand how the changing mass affects the properties of the system. How does the energy required to ionize a muonic hydrogen atom compare to that required to ionize a regular hydrogen atom?A. It is greater.B. It is approximately the same.C. It is less.arrow_forwardA muon is a short-lived particle. Muons are created by cosmic rays; they can also be created by particle accelerators. The muon is similar to an electron but has a larger mass: mμ ≈ 200me. During its brief lifetime, a muon can combine with a proton to create a system that is similar to atomic hydrogen called a muonic hydrogen atom. The larger mass of the muon makes some of the assumptions of the Bohr hydrogen atom treatment less accurate, but using the mathematics of the Bohr hydrogen atom to analyze this system will give approximate results that allow us to understand how the changing mass affects the properties of the system. The larger mass of the muon complicates an accurate mathematical treatment similar to that of the Bohr hydrogen atom becauseA. The de Broglie wavelength of the muon is shorter than that of the electron.B. The relatively small difference in mass between the muon and the proton means that we can’t ignore the motion of the proton.C. The short lifetime of the muon…arrow_forwarda)Define the term “standard candle” as used in cosmology. b)The flux is defined asf(Dlum) = L/4πD^2lumwhere L is the absolute luminosity and Dlum is the distance to the radiation source (youmay assume z ≪ 1).Assume that we have measured the flux to be f = 7.234 10^−23 Wm^−2 and the absoluteluminosity is given by L = 3.828 x10^26W. Calculate the luminosity distance D lum to the objectin Mpc.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax