Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 46, Problem 1OQ
To determine
What are the interaction that affects protons in an atomic nucleus?
Expert Solution & Answer
Answer to Problem 1OQ
All four given options (a)-(d) are correct. All the given interactions will affect protons in an atomic nucleus.
Explanation of Solution
- (a) The nuclear interaction: The nuclear interaction are force that acts between the nucleons inside the atomic nucleus. Protons in an atomic nucleus will be affected by this interaction.
- (b) The weak interaction: It is a short-range force and it affects fermions. Thus, protons in an atomic nucleus will be affected by this interaction.
- (c) The
electromagnetic interaction: This force can be attractive or repulsive and its acts between charged particles. Protons in an atomic nucleus will be affected by this interaction by repelling each other. - (d) The gravitational interaction: This interaction is long-range force and its strength is very much less than the nuclear interaction. It has negligible effects on proton and other elementary particles.
Thus, all four given options (a)-(d) are correct. All the given interactions will affect protons in an atomic nucleus.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A typical carbon nucleus contains 6 neutrons and 6 protons. The 6 protons are all positively charged and in very close proximity, with separations on the order of 10-15 meters, which should result in an enormous repulsive force. What prevents the nucleus from dismantling itself due to the repulsion of the electric force?
a. The attractive nature of the strong nuclear force overpowers the electric force.
b. The weak nuclear force barely offsets the electric force.
c. Magnetic forces generated by the orbiting electrons create a stable minimum in which the nuclear charged particles reside.
d. The attractive electric force of the surrounding electrons is equal in all directions and cancels out, leaving no net electric force.
Q3: The uniform beam has a mass of 50 kg per meter of length. Determine the reactions at the supports.
أنت
قبل ۷ دقائق
The suitable condition used in the fusion reaction is
O a. Absorptive electrostatic forces are overcome and the two nuclei can
come to a closer range to each other,
O b. Attractive electrostatic forces are overcome and the two nuclei can
come to a closer range to each other,
O c. Resistive electrostatic forces are overcome and the two nuclei can
come to a closer range to each other,
O d. Repulsive electrostatic forces are overcome and the two nuclei can
come to a closer range to each other,
O O D
Chapter 46 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 46.2 - Prob. 46.1QQCh. 46.5 - Prob. 46.3QQCh. 46.5 - Prob. 46.4QQCh. 46.8 - Prob. 46.5QQCh. 46.8 - Prob. 46.6QQCh. 46 - Prob. 1OQCh. 46 - Prob. 2OQCh. 46 - Prob. 3OQCh. 46 - Prob. 4OQCh. 46 - Prob. 5OQ
Ch. 46 - Prob. 6OQCh. 46 - Prob. 7OQCh. 46 - Prob. 8OQCh. 46 - Prob. 1CQCh. 46 - Prob. 2CQCh. 46 - Prob. 3CQCh. 46 - Prob. 4CQCh. 46 - Prob. 5CQCh. 46 - Prob. 6CQCh. 46 - Prob. 7CQCh. 46 - Prob. 8CQCh. 46 - Prob. 9CQCh. 46 - Prob. 10CQCh. 46 - Prob. 11CQCh. 46 - Prob. 12CQCh. 46 - Prob. 13CQCh. 46 - Prob. 1PCh. 46 - Prob. 2PCh. 46 - Prob. 3PCh. 46 - Prob. 4PCh. 46 - Prob. 5PCh. 46 - Prob. 6PCh. 46 - Prob. 7PCh. 46 - Prob. 8PCh. 46 - Prob. 9PCh. 46 - Prob. 10PCh. 46 - Prob. 11PCh. 46 - Prob. 12PCh. 46 - Prob. 13PCh. 46 - Prob. 14PCh. 46 - Prob. 15PCh. 46 - Prob. 16PCh. 46 - Prob. 17PCh. 46 - Prob. 18PCh. 46 - Prob. 19PCh. 46 - Prob. 20PCh. 46 - Prob. 21PCh. 46 - Prob. 22PCh. 46 - Prob. 23PCh. 46 - Prob. 24PCh. 46 - Prob. 25PCh. 46 - Prob. 26PCh. 46 - Prob. 27PCh. 46 - Prob. 28PCh. 46 - Prob. 29PCh. 46 - Prob. 30PCh. 46 - Prob. 31PCh. 46 - Prob. 32PCh. 46 - Prob. 33PCh. 46 - Prob. 34PCh. 46 - Prob. 35PCh. 46 - Prob. 36PCh. 46 - Prob. 37PCh. 46 - Prob. 38PCh. 46 - Prob. 39PCh. 46 - Prob. 40PCh. 46 - Prob. 41PCh. 46 - Prob. 42PCh. 46 - Prob. 43PCh. 46 - Prob. 44PCh. 46 - The various spectral lines observed in the light...Ch. 46 - Prob. 47PCh. 46 - Prob. 48PCh. 46 - Prob. 49PCh. 46 - Prob. 50PCh. 46 - Prob. 51APCh. 46 - Prob. 52APCh. 46 - Prob. 53APCh. 46 - Prob. 54APCh. 46 - Prob. 55APCh. 46 - Prob. 56APCh. 46 - Prob. 57APCh. 46 - Prob. 58APCh. 46 - An unstable particle, initially at rest, decays...Ch. 46 - Prob. 60APCh. 46 - Prob. 61APCh. 46 - Prob. 62APCh. 46 - Prob. 63APCh. 46 - Prob. 64APCh. 46 - Prob. 65APCh. 46 - Prob. 66APCh. 46 - Prob. 67CPCh. 46 - Prob. 68CPCh. 46 - Prob. 69CPCh. 46 - Prob. 70CPCh. 46 - Prob. 71CPCh. 46 - Prob. 72CPCh. 46 - Prob. 73CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Each of the following reactions is missing a single particle. Identify the missing particle for each reaction. p+pn+? p+pp+0+? ?+p+? K+n0+? +e++ve+? (f)ve+pn+?arrow_forwardThe strong force between nucleons has a magnitude of approximately 2.5 × 104 N for two nucleons whose centers are 1.0 fm apart. What is the electrostatic force between two protons this distance apart? Compare the electrostatic force to the strong force.arrow_forwardWhat is the ratio of the strength of the strong nuclear force to that of the electromagnetic force? Based on this ratio, you might expect that the strong force dominates the nucleus, which is true for small nuclei. Large nuclei, however, have sizes greater than the range of the strong nuclear force. At these sizes, the electromagnetic force begins to affect nuclear stability. These facts will be used to explain nuclear fusion and fission later in this text.arrow_forward
- While Uranium-235 is commonly used in nuclear power plants, the isotope U-238 is more commonly found in nature. a) How many neutrons are in the nuclei of U-235? b) How many neutrons are in the nuclei of U-238? Given the mass of 1 proton is 1.007825 amu, 1 neutron is 1.008665 amu and the binding energy of 1 amu is 931.49 MeV(1.MeV=1x10^6 eV). c) If the mass of U-235 is 235.0439299 amu, what is the mass defect in amu? d) What is the binding energy in MeV?arrow_forwardWhile Uranium-235 is commonly used in nuclear power plants, the isotope U-238 is more commonly found in nature. a) How many neutrons are in the nuclei of U-235? b) How many neutrons are in the nuclei of U-238? Given the mass of 1 proton is 1.007825 amu, 1 neutron is 1.008665 amu and the binding energy of 1 amu is 931.49 MeV(1 .MeV= 1 x 10^6 eV). c) If the mass of U-235 is 235.0439299 amu, what is the mass defect in amu? d) What is the binding energy in MeV?arrow_forwardTwo ions containing a total of 98 protons, 59 electrons, & 126 neutrons are smashed together at the LHC (Large Hadron Collider). The aftermath of the collision contains neutrinos, neutrons, protons, & electrons. After the collision physicists detect 108 neutrinos, 28 neutrons, & 104 electrons. According to the Law of Conservaton of Charge, how many protons must also be present? number of protons present after collision =arrow_forward
- What is the nuclear equation for Gd (alpha decay)? 64 149 Gd 64 44 Sm + He 62 b. Gd 149 64 147 Nd + He > 60 149 64 Gd 145 Sm + He С. 62 149 64 146 Sm + He 62 a C MacBook Proarrow_forwardA proton moving in the positive x direction at 4.3 Mm/s collides with a nucleus. The collision lasts 0.12 fs, and the average impulsive force is 42 i + 17 j micro - Newton. A) Find the velocity of the proton after the collision. B) Through what angle has the proton's motion been deflected?arrow_forwardThe isotope iron-56 has a nuclear mass of 55.9349375 u. Calculate the binding energy of iron-56 using the following information: Mass of Proton: 1.007825 u, Mass of Neutron: 1.008665 u, 1 u = 931.5 MeV a 3.274 eV b 6.153 eV c 8.790 eV d 9.624 eVarrow_forward
- Question number 5arrow_forwardIdentify the unknown particles X, A and Z in the following nuclear reactions: (a) X + He → "Mg + ¿n 12 (b) U + n→ Sr + ¿X + 2,n 235 90 Sr + ;X + 38arrow_forwardWhat amount of extra kinetic energy will be released in the reaction n + 235U → 93RB + 9³Rb+ 141 Cs + 2 n? In other words, what is the Q-value of the reaction? The mass of 93Rb is 92.9217 u, the mass of 14 Cs is 140.919 u, the mass of 235U is 235.044 u and the mass of n is 1.00867 u. The 2 value of c² is 931.5 MeV/u. Answer in units of MeV.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Half life | Radioactivity | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=IDkNlU7zKYU;License: Standard YouTube License, CC-BY