Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 46, Problem 16P
To determine
What kinds of neutrinos are released when a high-energy muon collides with an electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Supply the missing neutrinos in the following reactions or decays. (a) µ+ → e+ + ? (b) ? + p → n + e+ (c) π- → µ- + ? (d) K- → µ- + ? (e) ? + n → p + µ-
The following reactions or decays involve one or more neutrinos.In each case, supply the missing neutrino (υe, υμ, or υt ) or antineutrino.(a) π- → μ- + ? (b) K+ → μ+ + ?(c) ? + p → n + e+ (d) ? + n → p + e-(e) ? + n → p + μ- (f) μ- → e- + ? + ?
A positive pion (π+, mass: m = 2.50 × 10-28 kg) at rest decays into a
positive muon (μ+, mass: m₁ = 1.88 × 10-28 kg) and a neutrino.
mμ
(a) How much energy is released in the decay? You may assume the
rest mass of the neutrino is negligible. Give your answer in MeV.
(b) Give one reason why the neutrino is required in this decay. Briefly
explain your answer.
Chapter 46 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 46.2 - Prob. 46.1QQCh. 46.5 - Prob. 46.3QQCh. 46.5 - Prob. 46.4QQCh. 46.8 - Prob. 46.5QQCh. 46.8 - Prob. 46.6QQCh. 46 - Prob. 1OQCh. 46 - Prob. 2OQCh. 46 - Prob. 3OQCh. 46 - Prob. 4OQCh. 46 - Prob. 5OQ
Ch. 46 - Prob. 6OQCh. 46 - Prob. 7OQCh. 46 - Prob. 8OQCh. 46 - Prob. 1CQCh. 46 - Prob. 2CQCh. 46 - Prob. 3CQCh. 46 - Prob. 4CQCh. 46 - Prob. 5CQCh. 46 - Prob. 6CQCh. 46 - Prob. 7CQCh. 46 - Prob. 8CQCh. 46 - Prob. 9CQCh. 46 - Prob. 10CQCh. 46 - Prob. 11CQCh. 46 - Prob. 12CQCh. 46 - Prob. 13CQCh. 46 - Prob. 1PCh. 46 - Prob. 2PCh. 46 - Prob. 3PCh. 46 - Prob. 4PCh. 46 - Prob. 5PCh. 46 - Prob. 6PCh. 46 - Prob. 7PCh. 46 - Prob. 8PCh. 46 - Prob. 9PCh. 46 - Prob. 10PCh. 46 - Prob. 11PCh. 46 - Prob. 12PCh. 46 - Prob. 13PCh. 46 - Prob. 14PCh. 46 - Prob. 15PCh. 46 - Prob. 16PCh. 46 - Prob. 17PCh. 46 - Prob. 18PCh. 46 - Prob. 19PCh. 46 - Prob. 20PCh. 46 - Prob. 21PCh. 46 - Prob. 22PCh. 46 - Prob. 23PCh. 46 - Prob. 24PCh. 46 - Prob. 25PCh. 46 - Prob. 26PCh. 46 - Prob. 27PCh. 46 - Prob. 28PCh. 46 - Prob. 29PCh. 46 - Prob. 30PCh. 46 - Prob. 31PCh. 46 - Prob. 32PCh. 46 - Prob. 33PCh. 46 - Prob. 34PCh. 46 - Prob. 35PCh. 46 - Prob. 36PCh. 46 - Prob. 37PCh. 46 - Prob. 38PCh. 46 - Prob. 39PCh. 46 - Prob. 40PCh. 46 - Prob. 41PCh. 46 - Prob. 42PCh. 46 - Prob. 43PCh. 46 - Prob. 44PCh. 46 - The various spectral lines observed in the light...Ch. 46 - Prob. 47PCh. 46 - Prob. 48PCh. 46 - Prob. 49PCh. 46 - Prob. 50PCh. 46 - Prob. 51APCh. 46 - Prob. 52APCh. 46 - Prob. 53APCh. 46 - Prob. 54APCh. 46 - Prob. 55APCh. 46 - Prob. 56APCh. 46 - Prob. 57APCh. 46 - Prob. 58APCh. 46 - An unstable particle, initially at rest, decays...Ch. 46 - Prob. 60APCh. 46 - Prob. 61APCh. 46 - Prob. 62APCh. 46 - Prob. 63APCh. 46 - Prob. 64APCh. 46 - Prob. 65APCh. 46 - Prob. 66APCh. 46 - Prob. 67CPCh. 46 - Prob. 68CPCh. 46 - Prob. 69CPCh. 46 - Prob. 70CPCh. 46 - Prob. 71CPCh. 46 - Prob. 72CPCh. 46 - Prob. 73CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The primary decay mode for the negative pion is +v . (a) What is the energy release in MeV in this decay? (b) Using conservation of momentum, how much energy does each of the decay products receive, given the is at rest when it decays? You may assume the muon antineutrino is massless and has momentum p = E/c , just like a photon.arrow_forwardThe K0 meson is an uncharged member of the particle “zoo” that decays into two charged pions according to K0 → π+ + π−. The pions have opposite charges, as indicated, and the same mass, mπ = 140 MeV/c2. Suppose that a K0 at rest decays into two pions in a bubble chamber in which a magnetic field of 2.0 T is present (see Fig. P2.22). If the radius of curvature of the pions is 34.4 cm, find (a) the momenta and speeds of the pions and (b) the mass of the K0 meson.arrow_forwardA proton and an antiproton collide head-on, with each having a kinetic energy of 7.00 TeV (such as in the LHC at CERN). How much collision energy is available, taking into account the annihilation of the two masses? (Note that this is not significantly greater than the extremely relativistic kinetic energy.)arrow_forward
- Calculate the energy released in the + decay of 22Na, the equation for which is given in the text. The masses at 22Na and 22Ne are 21.994434 and 21.991333 u, reSpec?vely.arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y, how long would you have to wait on an average to see a single proton decay?arrow_forwardA pion at rest (m = 273me) decays to a muon (m = 207me) and an antineutrino (mp 0). The reaction is written + v. Find (a) the kinetic energy of the muon and (b) the energy of the antineutrino in electron volts.arrow_forward
- (a) Write the complete + decay equation for llC. (b) Calculate the energy released in the decay. The masses of 11C and 11B are 11.011433 and 11.009305 u, respectively.arrow_forwardWhen an electron and positron collide at the SLAC facility, they each have 50.0-GeV kinetic energies. What is the total collision energy available, taking into account the annihilation energy? Note that the annihilation energy is insignificant, because the electrons are highly relativistic.arrow_forwardAn unstable particle, initially at rest, decays into a proton (rest energy 938.3 MeV) and a negative pion (rest energy 139.5 MeV). A uniform magnetic field of 0.250 T exists perpendicular to the velocities of the created particles. The radius of curvature of each track is found to be 1.33 m. What is the rest mass of the original unstable particle?arrow_forward
- Integrated Concepts The primary decay mode for the negative pion is (a) What is the energy release in MeV in this decay? (b) Using conservation of momentum, how much energy does each of the decay products receive, given the is at rest when it decays? You may assume the muon antineutrino is massless and has momentum just like a photon.arrow_forwardUnreasonable Results A particle physicist discovers a neutral particle with a mass at 2.02733 u that he assumes is two neutrons bound together. (a) Find the binding energy. (b) What is unreasonable about this result? (c) What assumptions are unreasonable or inconsistent?arrow_forwardA proton and an antiproton collide headon, with each having a kinetic energy of 7.00 TeV (such as in the LHC at CERN). How much collision energy is available, taking into account the annihilation of the two masses? (Note that this is not significantly greater than the extremely relativistic kinetic energy.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning