The Heart of Mathematics: An Invitation to Effective Thinking
4th Edition
ISBN: 9781118156599
Author: Edward B. Burger, Michael Starbird
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4.6, Problem 38MS
Removing a slice of the pie. Complete the following table by making the cones, drawing triangles around the cone points, measuring the angles of the triangles, and adding them up.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The following are suggested designs for group sequential studies. Using PROCSEQDESIGN, provide the following for the design O’Brien Fleming and Pocock.• The critical boundary values for each analysis of the data• The expected sample sizes at each interim analysisAssume the standardized Z score method for calculating boundaries.Investigators are evaluating the success rate of a novel drug for treating a certain type ofbacterial wound infection. Since no existing treatment exists, they have planned a one-armstudy. They wish to test whether the success rate of the drug is better than 50%, whichthey have defined as the null success rate. Preliminary testing has estimated the successrate of the drug at 55%. The investigators are eager to get the drug into production andwould like to plan for 9 interim analyses (10 analyzes in total) of the data. Assume thesignificance level is 5% and power is 90%.Besides, draw a combined boundary plot (OBF, POC, and HP)
4. Solve the system of equations and express your solution using vectors.
2x1 +5x2+x3 + 3x4 = 9
-x2+x3 + x4 = 1
-x1-6x2+3x3 + 2x4
= -1
3. Simplify the matrix expression
A(A-B) - (A+B)B-2(A - B)2 + (A + B) 2
Chapter 4 Solutions
The Heart of Mathematics: An Invitation to Effective Thinking
Ch. 4.1 - The main event. State the Pythagorean Theorem.Ch. 4.1 - Two out of three. If a right triangle has legs of...Ch. 4.1 - Hypotenuse hype. If a right triangle has legs of...Ch. 4.1 - Assesing area. Suppose you know the base of a...Ch. 4.1 - Squares all around. How does the figure below...Ch. 4.1 - Operating on the triangle. Using a straightedge,...Ch. 4.1 - Excite your friends about right triangles....Ch. 4.1 - Easy as 1,2,3? Can there be a right triangle with...Ch. 4.1 - Sky high (S). On a sunny, warm day, a student...Ch. 4.1 - Sand masting (H). The sailboat named Sand Bug has...
Ch. 4.1 - Getting a pole on a bus. For his 13th birthday,...Ch. 4.1 - The Scarecrow (ExH). In the 1939 movie The Wizard...Ch. 4.1 - Rooting through a spiral. Start with a right...Ch. 4.1 - Is it right? (H) Suppose someone tells you that...Ch. 4.1 - Tfrain trouble (H). Train tracks are made of...Ch. 4.1 - Does everyone have what it takes to be a triangle?...Ch. 4.1 - Getting squared away. In our proof of the...Ch. 4.1 - The practical side of Pythagoras. Suppose you are...Ch. 4.1 - Pythagorean pizzas (H). You have a choice at the...Ch. 4.1 - Natural right (S). Suppose r and s are any two...Ch. 4.1 - Well-rounded shapes. Suppose we have two circles...Ch. 4.1 - A Pythagorean Theorem for triangles other than...Ch. 4.1 - With a group of folks. In a small group, discuss...Ch. 4.1 - Double trouble. Suppose you know a right triangle...Ch. 4.1 - K-ple trouble. Suppose you have a right triangle...Ch. 4.1 - Padding around. You have a rectangular patio with...Ch. 4.1 - Pythagoras goes the distance. Plot the points (5,...Ch. 4.1 - Ahoy there! (H) Your exotic sailboat, which you...Ch. 4.2 - Standing guard. Draw the floor plan of a gallery...Ch. 4.2 - Art appreciation. State the Art Gallery Theorem.Ch. 4.2 - Upping the ante. How many guards do you need for a...Ch. 4.2 - Keep it safe. At what vertices would you place...Ch. 4.2 - Puttoing guards in their place. For each floor...Ch. 4.2 - Guarding the Guggenheim. The Art Gallery Theorem...Ch. 4.2 - TriangulatIng the Louvre (H). Triangulate the...Ch. 4.2 - Triangulating the Clark. Triangulate the floor...Ch. 4.2 - Tricolor me (ExH). For each triangulation, color...Ch. 4.2 - Tricolor hue. For each triangulation, color the...Ch. 4.2 - One-third. Write the number 6 as a sum of three...Ch. 4.2 - Easy watch. Draw a floor plan of a museum with six...Ch. 4.2 - Two watches (S). Draw the floor plan of a museum...Ch. 4.2 - Mirror, mirror on the wall. Consider the floor...Ch. 4.2 - Nine needs three (H). Draw a floor plan for a...Ch. 4.2 - One-third again (ExH). If a natural number is...Ch. 4.2 - Square museum (S). If a museum has only...Ch. 4.2 - Worst squares (H). Draw examples of museums with...Ch. 4.2 - Pie are squared. The circumference of a circle of...Ch. 4.2 - I can see the light. Suppose you are in a...Ch. 4.2 - Less than. Youve tnangulated your polygon and...Ch. 4.2 - Greater than. Youve triangulated your polygon and...Ch. 4.2 - Counting the colors. Your polygon has 40 vertices....Ch. 4.2 - Only red. Twelve of your polygons vertices have...Ch. 4.2 - Totaling triangles. If a polygon has n sides, it...Ch. 4.3 - Defining gold. Explain what makes a rectangle a...Ch. 4.3 - Approximating gold. Which of these numbers is...Ch. 4.3 - Approximating again. Which of the following...Ch. 4.3 - Same solution. Why does the equation l1=1l have...Ch. 4.3 - X marks the unkonw (ExH). Solve eachh equation for...Ch. 4.3 - A cold tall one? Can a Golden Rectangle have a...Ch. 4.3 - Fold the gold (H). Suppose you have a Golden...Ch. 4.3 - Sheets of gold. Suppose you have two sheets of...Ch. 4.3 - Circular logic? (H). Take a Golden Rectangle and...Ch. 4.3 - Growing gold (H). Take a Golden Rectangle and...Ch. 4.3 - Counterfeit gold? Draw a rectangle with its longer...Ch. 4.3 - In the grid (S). Consider the 1010 grid at left....Ch. 4.3 - A nest of gold. Consider the figure of infinitely...Ch. 4.3 - Comparing areas (ExH). Let G be a Golden Rectangle...Ch. 4.3 - Do we get gold? Lets make a rectangle somewhat...Ch. 4.3 - Do we get gold this time? (S) We now describe...Ch. 4.3 - A silver lining? (H) Consider the diagonal in the...Ch. 4.3 - Prob. 20MSCh. 4.3 - Going platinum. Determine the dimensions of a...Ch. 4.3 - Golden triangles. Draw a right triangle with one...Ch. 4.3 - Prob. 23MSCh. 4.3 - Prob. 24MSCh. 4.3 - Prob. 25MSCh. 4.3 - Power beyond the mathematics. Provide several...Ch. 4.3 - Special K. As a student at the University of...Ch. 4.3 - Special x. Find all values of x satisfying the...Ch. 4.3 - In search of x. Solve each equation for x:...Ch. 4.3 - Adding a square. Your school Healthy Eating garden...Ch. 4.3 - Golden Pythagoras (H). If you have a Golden...Ch. 4.4 - To tile or not to tile. Which of the following...Ch. 4.4 - Shifting Into symmetry. Shown below are small...Ch. 4.4 - Prob. 3MSCh. 4.4 - Prob. 4MSCh. 4.4 - Symmetric scaling (ExH). Each of the two patterns...Ch. 4.4 - Build a super. Draw a 1,2,5 right triangle in the...Ch. 4.4 - Another angle. Look at the 5-unit super-tile you...Ch. 4.4 - Super-super. Surround your 5-unit super-tile with...Ch. 4.4 - Expand forever (H). If you continue the process of...Ch. 4.4 - Prob. 10MSCh. 4.4 - Expand again. Take your 4.unit equilateral...Ch. 4.4 - One-answer supers. Here is a Pinwheel Pattern. For...Ch. 4.4 - Prob. 14MSCh. 4.4 - Many answer supers (H). Shown here are pictures of...Ch. 4.4 - Fill er up? (ExH) For each tile below, could...Ch. 4.4 - Prob. 18MSCh. 4.4 - Prob. 19MSCh. 4.4 - Prob. 20MSCh. 4.4 - Penrose tiles. Roger Penrose constructed two tiles...Ch. 4.4 - Expand forever. Why does any shape that can be...Ch. 4.4 - Super total. Recall that the Pinwheel Triangle has...Ch. 4.4 - Prob. 26MSCh. 4.4 - XY-tiles. The trapezoidal tile on the left has one...Ch. 4.4 - School spirit. Your dorm bathroom is tiled using...Ch. 4.4 - T-total (H). Suppose you start with one small...Ch. 4.5 - Its nice to be regular. What makes a polygon a...Ch. 4.5 - Keeping it Platonic. What makes a solid a regular...Ch. 4.5 - Countem up. How many faces, edges, and vertices...Ch. 4.5 - Defending duality. Explain why the cube and the...Ch. 4.5 - The eye of the beholder. Suppose you have models...Ch. 4.5 - Drawing solids. Draw each solid by completing the...Ch. 4.5 - Count. For each of the regular solids, take the...Ch. 4.5 - Soccer counts (ExH). Look at a soccer ball. Take...Ch. 4.5 - A solid slice (S). For each regular solid, imagine...Ch. 4.5 - Siding on the cube. Suppose we start with the...Ch. 4.5 - Cube slices (H). Consider slicing the cube with a...Ch. 4.5 - Dual quads (S). Suppose you have a cube with edges...Ch. 4.5 - Super dual. Suppose you take a cube with edges of...Ch. 4.5 - Self-duals. Suppose you have a tetrahedron having...Ch. 4.5 - Not quite regular (ExH). Suppose you allow...Ch. 4.5 - Truncated solids. Slice off all the vertices of...Ch. 4.5 - Stellated solids. Take each regular solid and...Ch. 4.5 - Prob. 24MSCh. 4.5 - Here we celeb rate the power of algebra as a...Ch. 4.5 - Here we celeb rate the power of algebra as a...Ch. 4.5 - Here we celeb rate the power of algebra as a...Ch. 4.5 - Here we celeb rate the power of algebra as a...Ch. 4.5 - Here we celeb rate the power of algebra as a...Ch. 4.6 - Walkind the walk. Here are three walks from corner...Ch. 4.6 - Missing angle in action. The triangles below are...Ch. 4.6 - Slippery X. A triangle is drawn on a sphere. Can...Ch. 4.6 - A triangular trio. The sphere below has three...Ch. 4.6 - Saddle sores. The triangle at right is drawn on a...Ch. 4.6 - Travel agent. In each of the following three...Ch. 4.6 - Travel agent. In each of the following three...Ch. 4.6 - Travel agent. In each of the following three...Ch. 4.6 - Latitude losers (H). In each of the following...Ch. 4.6 - Latitude losers (H). In each of the following...Ch. 4.6 - Latitude losers (H). In each of the following...Ch. 4.6 - Spider and bug. For each pair of points on the...Ch. 4.6 - Spider and bug. For each pair of points on the...Ch. 4.6 - Spider and bug. For each pair of points on the...Ch. 4.6 - Spider and bug. For each pair of points on the...Ch. 4.6 - Spider and bug. For each pair of points on the...Ch. 4.6 - Big angles (H). What is the largest value we can...Ch. 4.6 - Many angles (S). Draw three different great...Ch. 4.6 - Quads in a plane. Measure the sum of the angles of...Ch. 4.6 - Quads on the sphere. Below are quadrilaterals on...Ch. 4.6 - Parallel lines (ExH). On a plane, if you draw a...Ch. 4.6 - Cubical spheres (ExH). Take a cube. Put a point in...Ch. 4.6 - Tetrahedral spheres. Lets do a similar calculation...Ch. 4.6 - Dodecahedral spheres. This Mindscape is the same...Ch. 4.6 - Total excess. Using the observations from the...Ch. 4.6 - What is the sum of the three angles? Why? Consider...Ch. 4.6 - What is the sum of the angles of your triangle? Is...Ch. 4.6 - Removing a slice of the pie. Complete the...Ch. 4.6 - Conjuring up a conjecture. Make a conjecture about...Ch. 4.6 - Tetrahedral angles. What is the sum of the angles...Ch. 4.6 - Here we celebrate the power of algebra as a...Ch. 4.6 - Here we celebrate the power of algebra as a...Ch. 4.6 - Here we celebrate the power of algebra as a...Ch. 4.6 - Here we celebrate the power of algebra as a...Ch. 4.6 - Here we celebrate the power of algebra as a...Ch. 4.7 - At one with the univers. Below is a sketch of a...Ch. 4.7 - Are we there yet? Why does the information x=4 not...Ch. 4.7 - Plain places. Plot the following points in the...Ch. 4.7 - Big stack. If you take a huge number of sheets of...Ch. 4.7 - A bigger stack. If you take a huge number of...Ch. 4.7 - On the level in two dimensions. Pictured in the...Ch. 4.7 - On the level in two dimensions (S). Pictured in...Ch. 4.7 - On the level in four dimensions. Pictured in the...Ch. 4.7 - Tearible 2s. In the pictures below, describe how...Ch. 4.7 - Dare not to tear? For the figures in the Tearible...Ch. 4.7 - Unlinking (H). Using the fourth dimension,...Ch. 4.7 - Unknotting. Describe how you would unknot the...Ch. 4.7 - Prob. 13MSCh. 4.7 - Edgy hypercubes (H). Produce drawings of the...Ch. 4.7 - Prob. 15MSCh. 4.7 - Prob. 16MSCh. 4.7 - Doughnuts in dimensions. Suppose we have a...Ch. 4.7 - Assembly required (S). As promised in the...Ch. 4.7 - Slicing the cube. Take a 3-dimensional cube...Ch. 4.7 - Here we celebrate the power of algebra as a...Ch. 4.7 - Here we celebrate the power of algebra as a...Ch. 4.7 - Here we celebrate the power of algebra as a...Ch. 4.7 - Here we celebrate the power of algebra as a...Ch. 4.7 - Here we celebrate the power of algebra as a...
Additional Math Textbook Solutions
Find more solutions based on key concepts
CHECK POINT 1 In a survey on musical tastes, respondents were asked: Do you listed to classical music? Do you l...
Thinking Mathematically (6th Edition)
NOTE: Write your answers using interval notation when appropriate.
CHECKING ANALYTIC SKILLS Fill in each blank ...
Graphical Approach To College Algebra
In Exercises 9–16, express the integrand as a sum of partial fractions and evaluate the integrals.
9.
University Calculus: Early Transcendentals (4th Edition)
Mathematical Connections Explain why a number and a numeral are considered different.
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Suppose that A and B are mutually exclusive events for which P(A) = .3 and P(B) = .5. What is the probability t...
A First Course in Probability (10th Edition)
Explore! Exercises 9 and 10 provide two data sets front “Graphs in Statistical Analysis,” by F J. Anscombe, the...
Elementary Statistics (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 10 5 Obtain by multiplying matrices the composite coordinate transformation of two transformations, first x' = (x + y√√2+2)/2 y' = z' (x√√2-2√2)/2 z = (-x+y√√2-2)/2 followed by x" = (x'√√2+z'√√2)/2 y" = (-x'y'√√2+2')/2 z" = (x'y'√√2-2')/2.arrow_forwardNot use ai pleasearrow_forward4 The plane 2x+3y+ 6z = 6 intersects the coordinate axes at P, Q, and R, forming a triangle. Draw a figure and identify the three points on it. Also find vectors PQ and PR. Write a vector formula for the area of the triangle PQR and find its value.arrow_forward
- 3.1 Limits 1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice. x+3° x+3* x+3 (a) Is 5 (c) Does not exist (b) is 6 (d) is infinitearrow_forward1 pts Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is Question 1 -0.246 0.072 -0.934 0.478 -0.914 -0.855 0.710 0.262 .arrow_forwardAnswer the number questions with the following answers +/- 2 sqrt(2) +/- i sqrt(6) (-3 +/-3 i sqrt(3))/4 +/-1 +/- sqrt(6) +/- 2/3 sqrt(3) 4 -3 +/- 3 i sqrt(3)arrow_forward
- 2. Answer the following questions. (A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity Vx (VF) V(V •F) - V²F (B) [50%] Remark. You are confined to use the differential identities. Let u and v be scalar fields, and F be a vector field given by F = (Vu) x (Vv) (i) Show that F is solenoidal (or incompressible). (ii) Show that G = (uvv – vVu) is a vector potential for F.arrow_forwardA driver is traveling along a straight road when a buffalo runs into the street. This driver has a reaction time of 0.75 seconds. When the driver sees the buffalo he is traveling at 44 ft/s, his car can decelerate at 2 ft/s^2 when the brakes are applied. What is the stopping distance between when the driver first saw the buffalo, to when the car stops.arrow_forwardTopic 2 Evaluate S x dx, using u-substitution. Then find the integral using 1-x2 trigonometric substitution. Discuss the results! Topic 3 Explain what an elementary anti-derivative is. Then consider the following ex integrals: fed dx x 1 Sdx In x Joseph Liouville proved that the first integral does not have an elementary anti- derivative Use this fact to prove that the second integral does not have an elementary anti-derivative. (hint: use an appropriate u-substitution!)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Quadrilaterals: Missing Angles and Sides; Author: rhornfeck;https://www.youtube.com/watch?v=knVj1O0L2TM;License: Standard YouTube License, CC-BY
STD IX | State Board | Types of Quadrilateral; Author: Robomate;https://www.youtube.com/watch?v=wh0KQ4UB0EU;License: Standard YouTube License, CC-BY