EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220100257056
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.5, Problem 62P
An insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains 4 kg of an ideal gas at 800 kPa and 50°C, and the other part is evacuated. The partition is now removed, and the gas expands into the entire tank. Determine the final temperature and pressure in the tank.
FIGURE P4–65
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3–50 A rigid tank with a volume of 1.8 m contains 40 kg of
saturated liquid-vapor mixture of water at 90°C. Now the water
is slowly heated. Determine the temperature at which the liquid
in the tank is completely vaporized. Also, show the process on
a T-V diagram with respect to saturation lines. Answer: 256°C
In this example, water is contained in a rigid container with a tight fitting lid. With a pressure of 700 kPa, a mass of 1.78 kg of saturated liquid, and a mass of 0.22 kg of saturated vapour, the saturated liquid has a mass of 1.78 kg and the saturated vapour has a mass of 0.22 kg. When the water pressure reaches 8 Mpa, more heat is added to it. Calculate the water's final internal energy. Values in between solutions should not be rounded off.
A frictionless piston-cylinder device initially contains 200L of saturated liquid refrigerant-134a. The piston is free to move and its mass is such that it maintains a pressure of 900 kPa on the refrigerant. The refrigerant is now heated until its temperature rises to 70C. Calculate the work done during this process. ANS. 5571 KJA fixed mass of an ideal gas is heated from 50 to 80°C at a constant pressure of (a) 1 atm and (b) 3 atm. For which case do you think the energy required will be greater?
Chapter 4 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 4.5 - An ideal gas at a given state expands to a fixed...Ch. 4.5 - Nitrogen at an initial state of 300 K, 150 kPa,...Ch. 4.5 - 4–3 The volume of 1 kg of helium in a...Ch. 4.5 - 4–4E Calculate the total work, in Btu, for process...Ch. 4.5 - 4–5 A piston–cylinder device initially contains...Ch. 4.5 - A pistoncylinder device with a set of stops...Ch. 4.5 - 4–7 A piston–cylinder device initially contains...Ch. 4.5 - 4–8 A mass of 5 kg of saturated water vapor at 300...Ch. 4.5 - 1 m3 of saturated liquid water at 200C is expanded...Ch. 4.5 - A gas is compressed from an initial volume of 0.42...
Ch. 4.5 - A mass of 1.5 kg of air at 120 kPa and 24C is...Ch. 4.5 - During some actual expansion and compression...Ch. 4.5 - 4–14 A frictionless piston–cylinder device...Ch. 4.5 - Prob. 15PCh. 4.5 - During an expansion process, the pressure of a gas...Ch. 4.5 - A pistoncylinder device initially contains 0.4 kg...Ch. 4.5 - 4–19E Hydrogen is contained in a piston–cylinder...Ch. 4.5 - A pistoncylinder device contains 0.15 kg of air...Ch. 4.5 - 1 kg of water that is initially at 90C with a...Ch. 4.5 - Prob. 22PCh. 4.5 - An ideal gas undergoes two processes in a...Ch. 4.5 - A pistoncylinder device contains 50 kg of water at...Ch. 4.5 - Prob. 26PCh. 4.5 - 4–27E A closed system undergoes a process in which...Ch. 4.5 - A rigid container equipped with a stirring device...Ch. 4.5 - A 0.5-m3rigid tank contains refrigerant-134a...Ch. 4.5 - A 20-ft3 rigid tank initially contains saturated...Ch. 4.5 - Prob. 31PCh. 4.5 - Prob. 32PCh. 4.5 - Prob. 33PCh. 4.5 - An insulated pistoncylinder device contains 5 L of...Ch. 4.5 -
4–35 A piston–cylinder device initially...Ch. 4.5 - Prob. 37PCh. 4.5 - A 40-L electrical radiator containing heating oil...Ch. 4.5 - Steam at 75 kPa and 8 percent quality is contained...Ch. 4.5 - Prob. 40PCh. 4.5 - An insulated tank is divided into two parts by a...Ch. 4.5 - Is the relation u = mcv,avgT restricted to...Ch. 4.5 - Is the relation h = mcp,avgT restricted to...Ch. 4.5 - Is the energy required to heat air from 295 to 305...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - Prob. 49PCh. 4.5 - What is the change in the enthalpy, in kJ/kg, of...Ch. 4.5 - Prob. 51PCh. 4.5 - Prob. 52PCh. 4.5 - Prob. 53PCh. 4.5 - Determine the internal energy change u of...Ch. 4.5 - Prob. 55PCh. 4.5 - Prob. 56PCh. 4.5 - Is it possible to compress an ideal gas...Ch. 4.5 - A 3-m3 rigid tank contains hydrogen at 250 kPa and...Ch. 4.5 - A 10-ft3 tank contains oxygen initially at 14.7...Ch. 4.5 - 4–60E A rigid tank contains 10 Ibm of air at 30...Ch. 4.5 - 4–61E Nitrogen gas to 20 psia and 100°F initially...Ch. 4.5 - An insulated rigid tank is divided into two equal...Ch. 4.5 - 4–63 A 4-m × 5-m × 6-m room is to be heated by a...Ch. 4.5 - 4-64 A student living in a 3-m × 4-m × 4-m...Ch. 4.5 - A 4-m 5-m 7-m room is heated by the radiator of...Ch. 4.5 - 4–66 Argon is compressed in a polytropic process...Ch. 4.5 - An insulated pistoncylinder device contains 100 L...Ch. 4.5 - 4–68 A spring-loaded piston-cylinder device...Ch. 4.5 - An ideal gas contained in a pistoncylinder device...Ch. 4.5 - Air is contained in a variable-load pistoncylinder...Ch. 4.5 - Prob. 71PCh. 4.5 - Prob. 72PCh. 4.5 - Prob. 74PCh. 4.5 - Prob. 75PCh. 4.5 - Prob. 76PCh. 4.5 - 4–77 Air is contained in a piston-cylinder device...Ch. 4.5 - A pistoncylinder device contains 4 kg of argon at...Ch. 4.5 - The state of liquid water is changed from 50 psia...Ch. 4.5 - During a picnic on a hot summer day, all the cold...Ch. 4.5 - Consider a 1000-W iron whose base plate is made of...Ch. 4.5 - Stainless steel ball bearings ( = 8085 kg/m3 and...Ch. 4.5 - In a production facility, 1.6-in-thick 2-ft 2-ft...Ch. 4.5 - Prob. 84PCh. 4.5 - An electronic device dissipating 25 W has a mass...Ch. 4.5 - Prob. 87PCh. 4.5 - 4–88 In a manufacturing facility, 5-cm-diameter...Ch. 4.5 - Prob. 89PCh. 4.5 - Is the metabolizable energy content of a food the...Ch. 4.5 - Is the number of prospective occupants an...Ch. 4.5 - Prob. 92PCh. 4.5 - Prob. 93PCh. 4.5 - Consider two identical 80-kg men who are eating...Ch. 4.5 - A 68-kg woman is planning to bicycle for an hour....Ch. 4.5 - A 90-kg man gives in to temptation and eats an...Ch. 4.5 - A 60-kg man used to have an apple every day after...Ch. 4.5 - Consider a man who has 20 kg of body fat when he...Ch. 4.5 - Consider two identical 50-kg women, Candy and...Ch. 4.5 - Prob. 100PCh. 4.5 - Prob. 101PCh. 4.5 - Prob. 102PCh. 4.5 - Prob. 103PCh. 4.5 - Prob. 104PCh. 4.5 - Prob. 105PCh. 4.5 - Prob. 106PCh. 4.5 - Prob. 107RPCh. 4.5 - Consider a pistoncylinder device that contains 0.5...Ch. 4.5 - Air in the amount of 2 lbm is contained in a...Ch. 4.5 - Air is expanded in a polytropic process with n =...Ch. 4.5 - Nitrogen at 100 kPa and 25C in a rigid vessel is...Ch. 4.5 - Prob. 112RPCh. 4.5 - Prob. 113RPCh. 4.5 - Prob. 114RPCh. 4.5 - 4–115 A mass of 12 kg of saturated...Ch. 4.5 - Prob. 116RPCh. 4.5 - Prob. 117RPCh. 4.5 - Prob. 118RPCh. 4.5 - Prob. 119RPCh. 4.5 - Prob. 120RPCh. 4.5 - Prob. 121RPCh. 4.5 - Prob. 122RPCh. 4.5 - Prob. 123RPCh. 4.5 - Prob. 124RPCh. 4.5 - Prob. 125RPCh. 4.5 - Prob. 126RPCh. 4.5 - Prob. 127RPCh. 4.5 - Prob. 128RPCh. 4.5 - A well-insulated 3-m 4m 6-m room initially at 7C...Ch. 4.5 - Prob. 131RPCh. 4.5 - Prob. 133RPCh. 4.5 - Prob. 134RPCh. 4.5 - An insulated pistoncylinder device initially...Ch. 4.5 - Prob. 137RPCh. 4.5 - Prob. 138RPCh. 4.5 - A pistoncylinder device initially contains 0.35 kg...Ch. 4.5 - Prob. 140RPCh. 4.5 - 4–141 One kilogram of carbon dioxide is compressed...Ch. 4.5 - Prob. 142RPCh. 4.5 - Prob. 143RPCh. 4.5 - Prob. 144FEPCh. 4.5 - A 3-m3 rigid tank contains nitrogen gas at 500 kPa...Ch. 4.5 - Prob. 146FEPCh. 4.5 - A well-sealed room contains 60 kg of air at 200...Ch. 4.5 - Prob. 148FEPCh. 4.5 - A room contains 75 kg of air at 100 kPa and 15C....Ch. 4.5 - A pistoncylinder device contains 5 kg of air at...Ch. 4.5 - Prob. 151FEPCh. 4.5 - Prob. 152FEPCh. 4.5 - A 2-kW electric resistance heater submerged in 5...Ch. 4.5 - 1.5 kg of liquid water initially at 12C is to be...Ch. 4.5 - An ordinary egg with a mass of 0.1 kg and a...Ch. 4.5 - 4–156 An apple with an average mass of 0.18 kg and...Ch. 4.5 - A 6-pack of canned drinks is to be cooled from 18C...Ch. 4.5 - An ideal gas has a gas constant R = 0.3 kJ/kgK and...Ch. 4.5 - Prob. 159FEPCh. 4.5 - Prob. 161FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 0.2 m^3 of an ideal gas at a pressure of 2Mpa and 600 k is expanded isothermally to 5 times the initial volume. It is then cooled to 300 K at constant Volume and then compressed back polytropically to its initial state. Show the process on a P-V diagram and determine the work done.arrow_forwardNiloarrow_forwardA 15 liter rigid bottle contains 15 kg of the refrigerant R-134A and it is at a temperature of 20°C. It is left in a hot car and reaches a temperature of 65°C. Determine the initial and final pressures. Is there any possibility of the bottle failing due to excessive pressure? (You can make this determination if it is a subcooled liquid.)arrow_forward
- 3–37E A spring-loaded piston-cylinder device is initially filled with 0.2 Ibm of an R-134a liquid-vapor mixture whose temperature is -30°F and whose quality is 80 percent. The spring constant in the spring force relation F = kx is 37 lbf/in, and the piston diameter is 12 in. The R-134a undergoes a process that increases its volume by 40 percent. Calculate the final temperature and enthalpy of the R-134a. Answers: 81.5°F, 120 Btu/lbm %3D Spring Fluid D- FIGURE P3-37Earrow_forwardA cylinder having an initial volume of 3 m3 contains 0.1 kg of water at 40°C. The water is then compressed in an isothermal quasi-equilibrium process until it has a quality of 50%. Calculate the work done in the process. Assume the water vapor is an ideal gas.arrow_forwardSee Attachedarrow_forward
- A piston-cylinder device contains 1 kg of hydrogen gas at 1600 kPa and 1327°C. Hydrogen gas is now allowed to cool at constant pressure until the temperature drops to 127°C. This is then followed by a second process in which the gas undergoes a constant volume process to a pressure of 400 kPa. In the final process, the gas is compressed in an isothermal process to a pressure of 1000 kPa. Using the gas constant, R of 4.12 kJ/kg.K for hydrogen, i. Determine the volume for all the states (m³) ii. Show and label all the processes on a P-V diagram. iii. Determine the mass of the air in your bedroom (kg). iv. Can the temperature and volume of the air in your bedroom be used to determine all the other properties of the air in your bedroom. Provide a brief explanation for your answer.arrow_forward0.5 kg of steam at 250°C is enclosed behind a piston in a cylinder at 0.9MPa. with the piston rigidly held in position, the cylinder is cooled until the pressure is 0.7MPa. Find the condition of the steam at the lower pressure. Calculate the change in internal energy and explain why this value represent the quantity of heat transfer during the cooling process. If the amount of heat is now transferred back into steam while the pressure remain constant at 0.7MPa, determine the final condition of the steam. Take the specific heat of superheated steam as 2kJ/kg K. (0.952, -115.7kJ, superheat temperature 231.1°C) 14. 15. A steam turbine is developed 3000kW from steam supplied at a pressure of 3 MPa and 300°C. The exhaust pressure is 7 kPa and the condition at exhaust is 0.9 dry. Determine a-the required steam flow rate in kg/s b-the cross sectional area of the turbine exhaust if the steam velocity is 75 m/s. (4.52 kg/s, 1.114 m²) initiall 1:arrow_forwardA piston-cylinder device initially contains 1 kg saturated liquid water at 220°C. Now heat is transferred to the water until the volume expands quadruple of its initial volume. Eventually, the cylinder contains saturated vapor only. Determine the volume at the final stage. (i) (ii) Determine the final temperature and pressure. (iii) Determine the internal energy change of the water. (iv) Sketch the T-v diagram and include all the related information.arrow_forward
- A partition divides an insulated tank into two parts which are not equal. One part of the tank contains 5 kg of compressed liquid water at 65°C and 600 kPa while the other part is evacuated (Hint: For compressed liquids, if tables are not available, use properties of the saturated liquid at the specified temperature). The partition is then removed, and the water expands to fill the entire tank. Determine the final temperature of the water and the volume of the tank for a final pressure of 20 kPa.arrow_forwardTHERMOFLUID A frictionless piston-cylinder contains 3.30 kg of saturated water at 1 MPa. The water is expanded at constant pressure until its temperature rises to 270 °C. The image of the system and process are shown in Figure 3. Determine: The final volume of water in cylinder, and sketch the process in P-V diagramarrow_forwardAmmonia with MW=17, weighing 22kg is confirmed inside a cylinder equipped with a piston has initial pressure of 413kPa and 48C. if 2900kJ of heat is added until the final pressure is 413kPa and final temperature is 100C. Determine the change in internal energy kJarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY