University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 44.2, Problem 44.2TYU
To determine
Whether the virtual photon obey the relationship
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron and a positron, each with a kinetic energy of 2.500 MeV, annihilate, creating two photons that travel away in opposite directions.What is the frequency of each photon?
In a pair-production reaction, a photon produces a proton-antiproton pair.
Y → p + p
The rest energy of a proton is 938.3 MeV.
(a) What is the lowest possible frequency (in Hz) of the photon that can produce the proton-antiproton pair?
Hz
(b) What is the wavelength (in m) that corresponds to this lowest possible frequency?
A particle and its anti-particle have the same mass and charge, but the charges will be of
opposite polarity. A particle and its anti-particle annihilate and produce two photons. The
particle has kinetic energy 2.0 MeV collides head on with its anti-particle that is at rest.
Find the energy and momentum of each photon.
(Given the mass of each particle is 0.632MeV/c²)
Select the correct answer choice:
(a) E = 1.088 MeV
E = 3.264 MeV
(b)
(c)
(d)
E = 1.632 MeV
E = 1.088 MeV
p=1.67 MeV/c
p=1.183 MeV/c
p=2.366 MeV/c
p=0.835 MeV/c
Chapter 44 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 44.1 - Each of the following particles can be exchanged...Ch. 44.2 - Prob. 44.2TYUCh. 44.3 - From conservation of energy, a particle of mass m...Ch. 44.4 - Prob. 44.4TYUCh. 44.5 - Prob. 44.5TYUCh. 44.6 - Is it accurate to say that your body is made of...Ch. 44.7 - Prob. 44.7TYUCh. 44 - Prob. 44.1DQCh. 44 - Prob. 44.2DQCh. 44 - When they were first discovered during the 1930s...
Ch. 44 - The gravitational force between two electrons is...Ch. 44 - Prob. 44.5DQCh. 44 - Prob. 44.6DQCh. 44 - Prob. 44.7DQCh. 44 - Prob. 44.8DQCh. 44 - Prob. 44.9DQCh. 44 - Does the universe have a center? Explain.Ch. 44 - Prob. 44.11DQCh. 44 - Prob. 44.12DQCh. 44 - Prob. 44.13DQCh. 44 - Prob. 44.1ECh. 44 - Prob. 44.2ECh. 44 - Prob. 44.3ECh. 44 - Prob. 44.4ECh. 44 - Prob. 44.5ECh. 44 - Prob. 44.6ECh. 44 - Prob. 44.7ECh. 44 - An electron with a total energy of 30.0 GeV...Ch. 44 - Deuterons in a cyclotron travel in a circle with...Ch. 44 - The magnetic field in a cyclotron that accelerates...Ch. 44 - Prob. 44.11ECh. 44 - Prob. 44.12ECh. 44 - Prob. 44.13ECh. 44 - Prob. 44.14ECh. 44 - Prob. 44.15ECh. 44 - Prob. 44.16ECh. 44 - Prob. 44.17ECh. 44 - Prob. 44.18ECh. 44 - What is the mass (in kg) of the Z0? What is the...Ch. 44 - Prob. 44.20ECh. 44 - Prob. 44.21ECh. 44 - Prob. 44.22ECh. 44 - Prob. 44.23ECh. 44 - Prob. 44.24ECh. 44 - Prob. 44.25ECh. 44 - Prob. 44.26ECh. 44 - Prob. 44.27ECh. 44 - Prob. 44.28ECh. 44 - Prob. 44.29ECh. 44 - Prob. 44.30ECh. 44 - Prob. 44.31ECh. 44 - Prob. 44.32ECh. 44 - Prob. 44.33ECh. 44 - Prob. 44.34ECh. 44 - Prob. 44.35ECh. 44 - Prob. 44.36ECh. 44 - Prob. 44.37ECh. 44 - Prob. 44.38ECh. 44 - Prob. 44.39PCh. 44 - Prob. 44.40PCh. 44 - Prob. 44.41PCh. 44 - Prob. 44.42PCh. 44 - Prob. 44.43PCh. 44 - Prob. 44.44PCh. 44 - Prob. 44.45PCh. 44 - Prob. 44.46PCh. 44 - Prob. 44.47PCh. 44 - Prob. 44.48PCh. 44 - Prob. 44.49PCh. 44 - Prob. 44.50PCh. 44 - Prob. 44.51PCh. 44 - The K0 meson has rest energy 497.7 MeV. A K0 meson...Ch. 44 - DATA While tuning up a medical cyclotron for use...Ch. 44 - Prob. 44.54PCh. 44 - Prob. 44.55PCh. 44 - Consider a collision in which a stationary...Ch. 44 - Prob. 44.57PPCh. 44 - Prob. 44.58PPCh. 44 - Prob. 44.59PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Recently scientists have discovered how to contain an anti-hydrogen atom, an element made of an anti-proton and an anti-electron, both of which have the same mass as their real matter counterparts. When anti-matter and matter collide, they annihilate each other and form pure energy. How much energy is given off when anti-hydrogen and hydrogen atom collide? Question 13 options: 1260 MeV 1880 MeV 720 MeV 940 MeVarrow_forwardAn electron and a positron, with a mass of 9.1 x 10-31 kilograms, annihilate each other, producing two photons. What is the approximate energy of each emerging photon? It is 0.51 Mev 2.0 MeV 4.0 MeV 1.02 MeV It cannot be determined unless the frequency of the photon is known.arrow_forwardIn one type of fusion reaction a proton fuses with a neutron to form a deuterium nucleus: 11 H + 10n → 21H+γ.The masses are 11H (1.0078 u), 10n (1.0087 u), and 21H (2.0141 u). The γ-ray photon is massless. How much energy (in MeV) is released by this reaction?arrow_forward
- The very high speeds of alpha particles make them suitable for experiments that probe the nature of matter. A nucleus ejects an alpha particle with a kinetic energy of 8.3 MeV, a typical energy. How fast is the alpha particle moving?arrow_forwardAn antiproton has the same mass and rest energy (938.3 MeV) as a proton, but has a negative change -e instead of the positive charge +e of the proton. A proton and an antiproton, initially far apart, move toward each other with the same speed and collide head-on, annihilating each other and producing two photons. Find the energies and wavelengths of the photons if the initial kinetic energies of the proton and antiproton are (a) both negligible and (b) both 545 MeV.arrow_forwardA 10.0 MeV photon is absorbed by a particle of mass 20.0 MeV. The reaction isγ+x→x.(a.) What is the mass (rest energy) of the particle after the collision in MeV? (b.) Show numerically that the gain in rest energy is equal to the photon’s energy minus the particle’s kinetic energy after the collision.arrow_forward
- An electron and a positron anihilate with equal and opposite momenta and become two photons: e- +e- → 2 photons. Both the electron and the positron have mass me and momentum of magnitude mec. Explain why the electron and positron cannot annihilate to become a single (a) photon. (b) What are the magnitudes of the momenta of the photons?arrow_forwardThe muon is unstable and has a mean lifetime of about 2.2 microseconds. A muon is an elementary particle similar to the electron. with an electric charge of -1 e, but with a much greater mass. The mass of a muon is 0.1135u, where the Atomic mass unit u = 1.66 x 10^-27 kg. It decays into an electron and two neutrinos. What is the energy released in this decay (in MeV)? Recall 1 eV = 1.6 x 10^-19 J).arrow_forwardAn electron-positron pair approach each other with identical speeds. The particle-pair collide and annihilate, producing two photons with identical wavelengths of 1.9 picometres. Note: 1 picometre = 1 × 10^−12 m.(i) Calculate the energy of each of the photons produced. (i) Calculate the speed of the electrons before the collisionarrow_forward
- 43. An electron and an antielectron (each has mass 9.11 x 10-³¹ kg), each traveling at 0.6c relative to the lab frame, collide head on and annihilate, resulting in the creation of two identical photons which travel away in opposite directions. What is the frequency of each photon? a) 1.91 x 1020 Hz b) 1.55 x 1020 Hz c) 1.67 x 1020 Hz d) 1.79 x 1020 Hz e) 1.43 x 1020 Hzarrow_forwardAn electron traveling with a speed of 2.5 x 10^6 meters per second collides with a photon having a frequency of 1 x 10^16 hertz. After the collision, the photon has 3.18 x 10^-18 joule of energy. Determine the energy in joules of the photon before the collision.arrow_forwardThe Compton wavelength, λc, of a particle of mass m is defined as follows: λc = h/mc. (a) Calculate the Compton wavelength of a proton. (b) Calculate the energy of a photon that has the same wavelength as found in part (a). (c) Show, in general, that a photon with a wavelength equal to the Compton wavelength of a particle has an energy that is equal to the rest energy of the particle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning