University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 44, Problem 44.39P
(a)
To determine
The complete decay of the
(b)
To determine
The energy released in the decay process of
(c)
To determine
The number of
(d)
To determine
The equivalent dose corresponding to the absorbed dose of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Beams of p- mesons are used in radiation therapy for certain cancers. The energy comes from the complete decay of the p- to stable particles. (a) Write out the complete decay of a p- meson to stable particles. What are these particles? (b) How much energy is released from the complete decay of a single p- meson to stable particles? (You can ignore the very small masses of the neutrinos.) (c) How many p- mesons need to decay to give a dose of 50.0 Gy to 10.0 g of tissue? (d) What would be the equivalent dose in part (c) in Sv and in rem? Consult Table 43.3 and use the largest appropriate RBE for the particles involved in this decay.
muon decay. use the expresión
3
Mw
T=
12ħ(8T)³
mac²
mμgw
with the values reported in PDG to estimate the half-life of the muon. Compare the theoretical
ww
value with the experimental value.
wwwwwwwwwwwwwwwww
wwww
4
A neutral pion (ρ0) has a mass of 264 times the electron mass and decays with a lifetime of 8.4 x 10-17 s to two photons. Such pions are used in the radiation treatment of some cancers. (a) Find the energy and wavelength of these photons. In which part of the electromagnetic spectrum do they lie? What is the RBE for these photons? (b) If you want to deliver a dose of 200 rem (which is typical) in a single treatment to 25 g of tumor tissue, how many ρ0 mesons are needed?
Chapter 44 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 44.1 - Each of the following particles can be exchanged...Ch. 44.2 - Prob. 44.2TYUCh. 44.3 - From conservation of energy, a particle of mass m...Ch. 44.4 - Prob. 44.4TYUCh. 44.5 - Prob. 44.5TYUCh. 44.6 - Is it accurate to say that your body is made of...Ch. 44.7 - Prob. 44.7TYUCh. 44 - Prob. 44.1DQCh. 44 - Prob. 44.2DQCh. 44 - When they were first discovered during the 1930s...
Ch. 44 - The gravitational force between two electrons is...Ch. 44 - Prob. 44.5DQCh. 44 - Prob. 44.6DQCh. 44 - Prob. 44.7DQCh. 44 - Prob. 44.8DQCh. 44 - Prob. 44.9DQCh. 44 - Does the universe have a center? Explain.Ch. 44 - Prob. 44.11DQCh. 44 - Prob. 44.12DQCh. 44 - Prob. 44.13DQCh. 44 - Prob. 44.1ECh. 44 - Prob. 44.2ECh. 44 - Prob. 44.3ECh. 44 - Prob. 44.4ECh. 44 - Prob. 44.5ECh. 44 - Prob. 44.6ECh. 44 - Prob. 44.7ECh. 44 - An electron with a total energy of 30.0 GeV...Ch. 44 - Deuterons in a cyclotron travel in a circle with...Ch. 44 - The magnetic field in a cyclotron that accelerates...Ch. 44 - Prob. 44.11ECh. 44 - Prob. 44.12ECh. 44 - Prob. 44.13ECh. 44 - Prob. 44.14ECh. 44 - Prob. 44.15ECh. 44 - Prob. 44.16ECh. 44 - Prob. 44.17ECh. 44 - Prob. 44.18ECh. 44 - What is the mass (in kg) of the Z0? What is the...Ch. 44 - Prob. 44.20ECh. 44 - Prob. 44.21ECh. 44 - Prob. 44.22ECh. 44 - Prob. 44.23ECh. 44 - Prob. 44.24ECh. 44 - Prob. 44.25ECh. 44 - Prob. 44.26ECh. 44 - Prob. 44.27ECh. 44 - Prob. 44.28ECh. 44 - Prob. 44.29ECh. 44 - Prob. 44.30ECh. 44 - Prob. 44.31ECh. 44 - Prob. 44.32ECh. 44 - Prob. 44.33ECh. 44 - Prob. 44.34ECh. 44 - Prob. 44.35ECh. 44 - Prob. 44.36ECh. 44 - Prob. 44.37ECh. 44 - Prob. 44.38ECh. 44 - Prob. 44.39PCh. 44 - Prob. 44.40PCh. 44 - Prob. 44.41PCh. 44 - Prob. 44.42PCh. 44 - Prob. 44.43PCh. 44 - Prob. 44.44PCh. 44 - Prob. 44.45PCh. 44 - Prob. 44.46PCh. 44 - Prob. 44.47PCh. 44 - Prob. 44.48PCh. 44 - Prob. 44.49PCh. 44 - Prob. 44.50PCh. 44 - Prob. 44.51PCh. 44 - The K0 meson has rest energy 497.7 MeV. A K0 meson...Ch. 44 - DATA While tuning up a medical cyclotron for use...Ch. 44 - Prob. 44.54PCh. 44 - Prob. 44.55PCh. 44 - Consider a collision in which a stationary...Ch. 44 - Prob. 44.57PPCh. 44 - Prob. 44.58PPCh. 44 - Prob. 44.59PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The K0 meson is an uncharged member of the particle “zoo” that decays into two charged pions according to K0 → π+ + π−. The pions have opposite charges, as indicated, and the same mass, mπ = 140 MeV/c2. Suppose that a K0 at rest decays into two pions in a bubble chamber in which a magnetic field of 2.0 T is present (see Fig. P2.22). If the radius of curvature of the pions is 34.4 cm, find (a) the momenta and speeds of the pions and (b) the mass of the K0 meson.arrow_forward(a) Write the complete + decay equation for llC. (b) Calculate the energy released in the decay. The masses of 11C and 11B are 11.011433 and 11.009305 u, respectively.arrow_forwardA proton and an antiproton collide headon, with each having a kinetic energy of 7.00 TeV (such as in the LHC at CERN). How much collision energy is available, taking into account the annihilation of the two masses? (Note that this is not significantly greater than the extremely relativistic kinetic energy.)arrow_forward
- The primary decay mode for the negative pion is +v . (a) What is the energy release in MeV in this decay? (b) Using conservation of momentum, how much energy does each of the decay products receive, given the is at rest when it decays? You may assume the muon antineutrino is massless and has momentum p = E/c , just like a photon.arrow_forward(a) What is the uncertainty in the energy released in the decay of a due to its short lifetime? (b) Is the uncertainty in 1his energy greater than or lees than the uncertainty in the mass of the tau neutrino? Discuss the source of the uncertainty.arrow_forwardIntegrated Concepts The primary decay mode for the negative pion is (a) What is the energy release in MeV in this decay? (b) Using conservation of momentum, how much energy does each of the decay products receive, given the is at rest when it decays? You may assume the muon antineutrino is massless and has momentum just like a photon.arrow_forward
- (a) Estimate the mass of the luminous matter in the known universe, given there are 1011 galaxies, each containing 1011 stars of average mass 1.5 times that of our Sun. (b) How many protons (the most abundant nuclide) are there in this mates? (c) Estimate the total number of particles in the observable universe by multiplying the answer to (b) by two, since there is an electron for each proton, and then by 109, since there are far more particles (such as photons and neutrinos) in space than in luminous matter.arrow_forwardThe primary decay mode for the negative pion is What is the energy release in MeV in this decay?arrow_forwardIntegrated Concepts Suppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y, how long would you have to wait on an average to see a single proton decay?arrow_forward
- Suppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y, how long would you have to wait on an average to see a single proton decay?arrow_forward(a) Write the decay equation for the decay of 235U. (b) What energy is released in this decay? The mass of the daughter nuclide is 231.036298 u. (c) Assuming the residual nucleus is formed in its ground state, how much energy goes to the particle?arrow_forwardThe electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical. (a) What is the thermal nuclear power output in megawatts? (b) How many 235U nuclei fission each second, assuming the average fission produces 200 MeV? (c) What mass of 235U is fissioned in one year of fullpower operation?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning