University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 44, Problem 44.37E
To determine
The peak wavelength of the black body
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The blackbody radiation emitted from a furnace peaks at a wavelength of 3.3 10-6 m (0.0000033 m). What is the temperature inside the furnace In K?
The blackbody radiation emitted from a furnace peaks at a wavelength of 2.5 10-6 m (0.0000025 m). What is the temperature inside the furnace? answer ... K
The blackbody radiation emitted from a furnace peaks at the wavelenght of 1.2 x 10^-6 m (0.0000012 m). What is the temperature inside the furnace?
Chapter 44 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 44.1 - Each of the following particles can be exchanged...Ch. 44.2 - Prob. 44.2TYUCh. 44.3 - From conservation of energy, a particle of mass m...Ch. 44.4 - Prob. 44.4TYUCh. 44.5 - Prob. 44.5TYUCh. 44.6 - Is it accurate to say that your body is made of...Ch. 44.7 - Prob. 44.7TYUCh. 44 - Prob. 44.1DQCh. 44 - Prob. 44.2DQCh. 44 - When they were first discovered during the 1930s...
Ch. 44 - The gravitational force between two electrons is...Ch. 44 - Prob. 44.5DQCh. 44 - Prob. 44.6DQCh. 44 - Prob. 44.7DQCh. 44 - Prob. 44.8DQCh. 44 - Prob. 44.9DQCh. 44 - Does the universe have a center? Explain.Ch. 44 - Prob. 44.11DQCh. 44 - Prob. 44.12DQCh. 44 - Prob. 44.13DQCh. 44 - Prob. 44.1ECh. 44 - Prob. 44.2ECh. 44 - Prob. 44.3ECh. 44 - Prob. 44.4ECh. 44 - Prob. 44.5ECh. 44 - Prob. 44.6ECh. 44 - Prob. 44.7ECh. 44 - An electron with a total energy of 30.0 GeV...Ch. 44 - Deuterons in a cyclotron travel in a circle with...Ch. 44 - The magnetic field in a cyclotron that accelerates...Ch. 44 - Prob. 44.11ECh. 44 - Prob. 44.12ECh. 44 - Prob. 44.13ECh. 44 - Prob. 44.14ECh. 44 - Prob. 44.15ECh. 44 - Prob. 44.16ECh. 44 - Prob. 44.17ECh. 44 - Prob. 44.18ECh. 44 - What is the mass (in kg) of the Z0? What is the...Ch. 44 - Prob. 44.20ECh. 44 - Prob. 44.21ECh. 44 - Prob. 44.22ECh. 44 - Prob. 44.23ECh. 44 - Prob. 44.24ECh. 44 - Prob. 44.25ECh. 44 - Prob. 44.26ECh. 44 - Prob. 44.27ECh. 44 - Prob. 44.28ECh. 44 - Prob. 44.29ECh. 44 - Prob. 44.30ECh. 44 - Prob. 44.31ECh. 44 - Prob. 44.32ECh. 44 - Prob. 44.33ECh. 44 - Prob. 44.34ECh. 44 - Prob. 44.35ECh. 44 - Prob. 44.36ECh. 44 - Prob. 44.37ECh. 44 - Prob. 44.38ECh. 44 - Prob. 44.39PCh. 44 - Prob. 44.40PCh. 44 - Prob. 44.41PCh. 44 - Prob. 44.42PCh. 44 - Prob. 44.43PCh. 44 - Prob. 44.44PCh. 44 - Prob. 44.45PCh. 44 - Prob. 44.46PCh. 44 - Prob. 44.47PCh. 44 - Prob. 44.48PCh. 44 - Prob. 44.49PCh. 44 - Prob. 44.50PCh. 44 - Prob. 44.51PCh. 44 - The K0 meson has rest energy 497.7 MeV. A K0 meson...Ch. 44 - DATA While tuning up a medical cyclotron for use...Ch. 44 - Prob. 44.54PCh. 44 - Prob. 44.55PCh. 44 - Consider a collision in which a stationary...Ch. 44 - Prob. 44.57PPCh. 44 - Prob. 44.58PPCh. 44 - Prob. 44.59PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a black body of surface area 22.0 cm² and temperature 5700 K. (a) How much power does it radiate? 131675.5 W (b) At what wavelength does it radiate most intensely? 508.421 nm (c) Find the spectral power per wavelength at this wavelength. Remember that the Planck intensity is "intensity per unit wavelength", with units of W/m³, and "power per unit wavelength" is equal to that intensity times the surface area, with units of W/m 131.5775 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. W/marrow_forwardThe blackbody radiation emitted from a furnace peaks at a wavelength of 3.5 x 10-6 m (0.0000035 m). What is the temperature inside the furnace? K.arrow_forwardAt what rate does the Sun emit photons? For simplicity, assume that the Sun’s entire emission at the rate of 3.9 * 10^26 W is at the single wavelength of 550 nm.arrow_forward
- 3.5. The threshold wavelength for photoelectric emission in Tungsten is 240 nm. What wavelength of light must be used in order that the emitted photoelectrons have a KE max of 1.2 eV.arrow_forwardA log in the fire is glowing red (λ = 629 nm). What is the temperature of the log, in kelvin?arrow_forwardIn the LHC, protons are accelerated to a total energy of 7.80 TeV. The mass of proton is 1.673 × 10−27 kg and Planck’s constant is 6.626 × 10−34 J·s. In the reference frame of the protons, how long does it take the protons to go around the tunnel once? I know the answer is 10.8ns. The solutions posted on here, do not come within 1% of that answer so I cannot trust that the steps are correct. Please give step by step instructions on how to arrive at 10.8 nsarrow_forward
- If all the energy from a 119 W light bulb is emitted, on average, at 690.0 nm, how many 690.0 nm photons must be emitted each second to account for all 119 W? Planck’s constant is 6.6 x 10-34 J*s and the speed of light is 3.0 x 108 m/s.arrow_forwardThe power emitted by a blackbody is proportional to T^4. If the temperature of the blackbody goes from 3000K to 6000K, by how much (by what factor, 2, 3, 8, etc) does the power increase?arrow_forwardA light detector has an area of 3.1m2 and absorbs 53.9% of the incident light, which is at wavelength 682.3nm. The detector faces an isotropic source, 2.1m from the source. If the detector absorbs photons at the rate of exactly 6photons/s , at what rate( in photons/s) does the emitter emit light?arrow_forward
- An object radiates strongly at 473 nm. What is its blackbody temperature in Kelvins?arrow_forwardthe power emitted by a blackbody is proportional to T^4 if the temperature of the blackbody goes from 3000k to 6000k by how much does the power increase? (By what factor, 2,4,6 etc)arrow_forwardThen, why the answers are different when I use different formulas, dB= 10log (I/ I0) and I= I0 10^-ax? The first one is 5e-5 W/cm^2 and the second one is 5e-23 W/cm^2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning