An Introduction to Thermal Physics
An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
bartleby

Videos

Textbook Question
Book Icon
Chapter 4.4, Problem 34P

Consider an ideal Hampson-Linde cycle in which no heat is lost to the environment.

(a) Argue that the combination of the throttling valve and the heat exchanger is a constant-enthalpy device, so that the total enthalpy of the fluid coming out of this combination is the same as the enthalpy of the fluid going in.

(b) Let x be the fraction of the fluid that liquefies on each pass through the cycle. Show that x = H o u t H i n H o u t H l i q , where H i n is the enthalpy of each mole of compressed gas that goes into the heat exchanger, H o u t is the enthalpy of each mole of low-pressure gas that comes out of the heat exchanger, and H l i q is the enthalpy of each mole of liquid produced.

(c) Use the data in Table 4.5 to calculate the fraction of nitrogen liquefied on each pass through a Hampson-Linde cycle operating between 1 bar and 100 bars, with an input temperature of 300 K. Assume that the heat exchanger works perfectly, so that temperature of the low-pressure gas coming out of it is the same as the temperature of the high-pressure gas going in. Repeat the calculation for input temperature of 200 K.

Blurred answer
Students have asked these similar questions
A polarized light is incident on several polarizing disks whose planes are parallel and centered on common axis. Suppose that the transmission axis of the first polarizer is rotated 20° relative to the axis of polarization of the incident and that the transmission axis of each exis of light, additional analyzer is rotated 20° relative to the transmission axis the previous one. What is the minimum number of polarizer needed (whole number), so the transmitted light through all polarizing sheets has an Striking intensity that is less then 10% that the first polarizer?
A high energy pulsed laser emits 1.5 nano second-long pulse of average power 1.80x10" W. The beam is cylindrical with 2.00 mm in radius. Determine the rms value of the B-field? -T
A 23.0-mw (mill:-Watts) laser puts out a narrow cyclindrical beam 50 mm in diameter. What is the average N/C. rms E-field?

Chapter 4 Solutions

An Introduction to Thermal Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY