
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.3, Problem 4.3TYU
Rank the following situations in order of the magnitude of the object’s acceleration, from lowest to highest. Are there any cases that have the same magnitude of acceleration? (i) A 2.0-kg object acted on by a 2.0-N net force; (ii) a 2.0-kg object acted on by an 8.0-N net force; (iii) an 8.0-kg object acted on by a 2.0-N net force; (iv) an 8.0-kg object acted on by a 8.0-N net force.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A 1.40-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Figure a). The object has a speed of v₁ = 3.50 m/s when it makes contact with a light spring (Figure b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been
compressed a distance d (Figure c). The object is then forced toward the left by the spring (Figure d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Figure e).
d
m
v=0
-D- www
(a) Find the distance of compression d (in m).
m
(b) Find the speed v (in m/s) at the unstretched position when the object is moving to the left (Figure d).
m/s
(c) Find the distance D (in m) where the object comes to rest.
m
(d) What If? If the object becomes attached securely to the end of the spring when it makes contact, what is the new value of the distance D (in m) at which the object will come to…
As shown in the figure, a 0.580 kg object is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the object travels along a frictionless, horizontal surface to point A, the bottom of a
vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the object at the bottom of the track is VA = 13.0 m/s, and the object experiences an average frictional force of 7.00 N while sliding up the track.
R
(a) What is x?
m
A
(b) If the object were to reach the top of the track, what would be its speed (in m/s) at that point?
m/s
(c) Does the object actually reach the top of the track, or does it fall off before reaching the top?
O reaches the top of the track
O falls off before reaching the top
○ not enough information to tell
A block of mass 1.4 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest.
wwww
wwwwww
a
F
x = 0
0
b
i
(a) A constant friction force of 4.4 N retards the block's motion from the moment it is released. Using an energy approach, find the position x of the block at which its speed is a maximum.
ст
(b) Explore the effect of an increased friction force of 13.0 N. At what position of the block does its maximum speed occur in this situation?
cm
Chapter 4 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 4.1 - Figure 4.5 shows a force F acting on a crate. With...Ch. 4.2 - In which of the following situations is there zero...Ch. 4.3 - Rank the following situations in order of the...Ch. 4.4 - Prob. 4.4TYUCh. 4.5 - You are driving a car on a country road when a...Ch. 4 - Can a body be in equilibrium when only one force...Ch. 4 - A ball thrown straight up has zero velocity at its...Ch. 4 - A helium balloon hovers in midair, neither...Ch. 4 - When you fly in an airplane at night in smooth...Ch. 4 - If the two ends of a rope in equilibrium are...
Ch. 4 - You tie a brick lo the end of a rope and whirl the...Ch. 4 - When a car stops suddenly, the passengers tend to...Ch. 4 - Some people say that the force of inertia (or...Ch. 4 - A passenger in a moving bus with no windows...Ch. 4 - Suppose you chose the fundamental physical...Ch. 4 - Why is the earth only approximately an inertial...Ch. 4 - Does Newtons second law hold true for an observer...Ch. 4 - Some students refer to the quantity ma as the...Ch. 4 - The acceleration of a falling body is measured in...Ch. 4 - You can play catch with a softball in a bus moving...Ch. 4 - Students sometimes say that the force of gravity...Ch. 4 - Why can it hurt your foot more to kick a big rock...Ch. 4 - Its not the fall that hurts you; its the sudden...Ch. 4 - A person can dive into water from a height of 10 m...Ch. 4 - Why are cars designed to crumple in front and back...Ch. 4 - When a string barely strong enough lifts a heavy...Ch. 4 - A large crate is suspended from the end of a...Ch. 4 - Which feels a greater pull due to the earths...Ch. 4 - Why is it incorrect to say that 1.0 kg equals 2.2...Ch. 4 - A horse is hitched to a wagon. Since the wagon...Ch. 4 - True or false? You exert a push P on an object and...Ch. 4 - A large truck and a small compact car have a...Ch. 4 - When a car comes to a stop on a level highway,...Ch. 4 - A small compact car is pushing a large van that...Ch. 4 - Consider a tug-of-war between two people who pull...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A manual for student pilots contains this passage:...Ch. 4 - If your hands are wet and no towel is handy, you...Ch. 4 - If you squat down (such as when you examine the...Ch. 4 - When a car is hit from behind, the occupants may...Ch. 4 - In a head-on auto collision, passengers who are...Ch. 4 - In a head-on collision between a compact 1000-kg...Ch. 4 - Suppose you are in a rocket with no windows,...Ch. 4 - Two dogs pull horizontally on ropes attached to a...Ch. 4 - To extricate an SUV stuck in the mud, workmen use...Ch. 4 - BIO Jaw Injury. Due to a jaw injury, a patient...Ch. 4 - A man is dragging a trunk up the loading ramp of a...Ch. 4 - Forces F1 and F2act at a point. The magnitude of...Ch. 4 - An electron (mass = 9.11 1031 kg) leaves one end...Ch. 4 - A 68.5-kg skater moving initially at 2.40 m/s on...Ch. 4 - You walk into an elevator, step onto a scale, and...Ch. 4 - A box rests on a frozen pond, which serves as a...Ch. 4 - A dockworker applies a constant horizontal force...Ch. 4 - A hockey puck with mass 0.160 kg is at rest at the...Ch. 4 - A crate with mass 32.5 kg initially at rest on a...Ch. 4 - A 4.50-kg experimental cart undergoes an...Ch. 4 - A 2.75-kg cat moves in a straight line (the...Ch. 4 - A small 8.00-kg rocket burns fuel that exerts a...Ch. 4 - An astronauts pack weighs 17.5 N when she is on...Ch. 4 - Superman throws a 2400-N boulder at an adversary....Ch. 4 - BIO (a) An ordinary flea has a mass of 210 g. How...Ch. 4 - At the surface of Jupiters moon Io, the...Ch. 4 - A small car of mass 380 kg is pushing a large...Ch. 4 - BIO World-class sprinters can accelerate out of...Ch. 4 - The upward normal force exerted by the floor is...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A student of mass 45 kg jumps off a high diving...Ch. 4 - Section 4.6 Free-Body Diagrams 4.25Crates A and B...Ch. 4 - You pull horizontally on block B in Fig. F4.26,...Ch. 4 - A ball is hanging from a long siring that is tied...Ch. 4 - CP A .22-caliber rifle bullet traveling at 350 m/s...Ch. 4 - A chair of mass 12.0 kg is sitting on the...Ch. 4 - A large box containing your new computer sits on...Ch. 4 - CP A 5.60-kg bucket of water is accelerated upward...Ch. 4 - CP You have just landed on Planet X. You release a...Ch. 4 - Two adults and a child want to push a wheeled cart...Ch. 4 - CP An oil tankers engines have broken down, and...Ch. 4 - CP BIO A Standing Vertical Jump. Basketball player...Ch. 4 - CP An advertisement claims that a particular...Ch. 4 - BIO Human Biomechanics. The fastest pitched...Ch. 4 - BIO Human Biomechanics. The fastest served tennis...Ch. 4 - Two crates, one with mass 4.00 kg and the other...Ch. 4 - CP Two blocks connected by a light horizontal rope...Ch. 4 - CALC To study damage to aircraft that collide with...Ch. 4 - CP A 6.50-kg instrument is hanging by a vertical...Ch. 4 - BIO Insect Dynamics. The froghopper (Philaenus...Ch. 4 - A loaded elevator with very worn cables has a...Ch. 4 - CP After an annual checkup, you leave your...Ch. 4 - CP A nail in a pine board stops a 4.9-N hammer...Ch. 4 - CP Jumping to the Ground. A 75.0-kg man steps off...Ch. 4 - The two blocks in Fig. P4.48 are connected by a...Ch. 4 - CP Boxes A and B are connected to each end of a...Ch. 4 - CP Extraterrestrial Physics. You have landed on an...Ch. 4 - CP CALC A mysterious rocket-propelled object of...Ch. 4 - CALC The position of a training helicopter (weight...Ch. 4 - DATA The table gives automobile performance data...Ch. 4 - DATA An 8.00-kg box sits on a level floor. You...Ch. 4 - DATA You are a Starfleet captain going boldly...Ch. 4 - Prob. 4.56CPCh. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCERS BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - The forces on a dancer can be measured directly...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Analyzing ecological footprints reveals that (A) Earth's carrying capacity would increase if per capita meat co...
Campbell Biology (11th Edition)
2 Of the uterus, small intestine, spinal cord, and heart, which is/are in the dorsal body cavity?
Anatomy & Physiology (6th Edition)
Explain how the behavior of homologous chromosomes in meiosis parallels Mendels law of segregation for autosoma...
Genetic Analysis: An Integrated Approach (3rd Edition)
Draw the mechanism for the hydroxide ion-catalyzed cleavage of fructose-l.6-bisphosphate.
Organic Chemistry (8th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You have a new internship, where you are helping to design a new freight yard for the train station in your city. There will be a number of dead-end sidings where single cars can be stored until they are needed. To keep the cars from running off the tracks at the end of the siding, you have designed a combination of two coiled springs as illustrated in the figure below. When a car moves to the right in the figure and strikes the springs, they exert a force to the left on the car to slow it down. Total force (N) 2000 1500 1000 500 Distance (cm) 10 20 30 40 50 60 i Both springs are described by Hooke's law and have spring constants k₁ = 1,900 N/m and k₂ = 2,700 N/m. After the first spring compresses by a distance of d = 30.0 cm, the second spring acts with the first to increase the force to the left on the car in the figure. When the spring with spring constant k₂ compresses by 50.0 cm, the coils of both springs are pressed together, so that the springs can no longer compress. A typical…arrow_forwardA spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = incline angle is 0 = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m k www m 0.750 m/s. Thearrow_forwardA block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www Ө m = 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s2 Direction O up the incline down the inclinearrow_forward
- (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. 3.00 m -A B C -6.00 m (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? ○ Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) marrow_forwardA ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т h m a d T b (a) Find the speed of the ball just as it touches the spring. m/s (b) Find the force constant of the spring. kN/marrow_forwardTruck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 x 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? m (b) How much work is done in compressing the springs? ]arrow_forward
- A block of mass m₁ = 10.0 kg is connected to a block of mass m₂ 34.0 kg by a massless string that passes over a light, frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 200 N/m as shown in the figure below. The spring is unstretched when the system is as shown in the figure, and the incline is frictionless. The 10.0-kg block is pulled a distance h = 22.0 cm down the incline of angle = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched. Vm1 × 1.32 Vm2 = 1.32 × m/s m/sarrow_forwardA block of mass m₁ = 10.0 kg is connected to a block of mass m₂ = 34.0 kg by a massless string that passes over a light, frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 200 N/m as shown in the figure below. The spring is unstretched when the system is as shown in the figure, and the incline is frictionless. The 10.0-kg block is pulled a distance h = 22.0 cm down the incline of angle 0 = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched. m/s Vm1 Vm2 m/s mi m2 k iarrow_forwardTruck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as in the figure below. The helper spring engages when the main leaf spring is compressed by distance yo, and then helps to support any additional load. Consider a leaf spring constant of 5.45 × 105 N/m, helper spring constant of 3.60 × 105 N/m, and y = 0.500 m. Truck body Dyo Axle (a) What is the compression of the leaf spring for a load of 4.90 × 105 N? m (b) How much work is done compressing the springs? ]arrow_forward
- A skier of mass 75 kg is pulled up a slope by a motor-driven cable. (a) How much work is required to pull him 50 m up a 30° slope (assumed frictionless) at a constant speed of 2.8 m/s? KJ (b) What power (expressed in hp) must a motor have to perform this task? hparrow_forwardA block of mass 1.4 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest. a x = 0 x b (a) A constant friction force of 4.4 N retards the block's motion from the moment it is released. Using an energy approach, find the position x of the block at which its speed is a maximum. cm (b) Explore the effect of an increased friction force of 13.0 N. At what position of the block does its maximum speed occur in this situation? cmarrow_forwardA block of mass m = 3.00 kg situated on a rough incline at an angle of 0 = 37.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (see the figure below). The pulley is frictionelss. The block is released from rest when the spring is unstretched. The block moves 11.0 cm down the incline before coming to rest. Find the coefficient of kinetic friction between block and incline. k=100 N/m Ө marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY