
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.51P
CP CALC A mysterious rocket-propelled object of mass 45.0 kg is initially at rest in the middle of the horizontal, frictionless surface of an ice-covered lake. Then a force directed east and with magnitude F(t) = (16.8 N/s)t is applied. How far does the object travel in the first 5.00 s after the force is applied?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Define operational amplifier
A bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying
Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge.
(a) What length of cord should he use?
Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the
jump case. Use conservation of mechanical energy to determine the length of the rope. m
(b) What maximum acceleration will he…
9 V
300 Ω
www
100 Ω 200 Ω
www
400 Ω
500 Ω
www
600 Ω
ww
700 Ω
Figure 1: Circuit symbols for a variety of useful circuit elements
Problem 04.07 (17 points). Answer the following questions related to the figure below.
A What is the equivalent resistance of the network of resistors in the circuit below?
B If the battery has an EMF of 9V and is considered as an ideal batter (internal resistance
is zero), how much current flows through it in this circuit?
C If the 9V EMF battery has an internal resistance of 2 2, would this current be larger
or smaller? By how much?
D In the ideal battery case, calculate the current through and the voltage across each
resistor in the circuit.
Chapter 4 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 4.1 - Figure 4.5 shows a force F acting on a crate. With...Ch. 4.2 - In which of the following situations is there zero...Ch. 4.3 - Rank the following situations in order of the...Ch. 4.4 - Prob. 4.4TYUCh. 4.5 - You are driving a car on a country road when a...Ch. 4 - Can a body be in equilibrium when only one force...Ch. 4 - A ball thrown straight up has zero velocity at its...Ch. 4 - A helium balloon hovers in midair, neither...Ch. 4 - When you fly in an airplane at night in smooth...Ch. 4 - If the two ends of a rope in equilibrium are...
Ch. 4 - You tie a brick lo the end of a rope and whirl the...Ch. 4 - When a car stops suddenly, the passengers tend to...Ch. 4 - Some people say that the force of inertia (or...Ch. 4 - A passenger in a moving bus with no windows...Ch. 4 - Suppose you chose the fundamental physical...Ch. 4 - Why is the earth only approximately an inertial...Ch. 4 - Does Newtons second law hold true for an observer...Ch. 4 - Some students refer to the quantity ma as the...Ch. 4 - The acceleration of a falling body is measured in...Ch. 4 - You can play catch with a softball in a bus moving...Ch. 4 - Students sometimes say that the force of gravity...Ch. 4 - Why can it hurt your foot more to kick a big rock...Ch. 4 - Its not the fall that hurts you; its the sudden...Ch. 4 - A person can dive into water from a height of 10 m...Ch. 4 - Why are cars designed to crumple in front and back...Ch. 4 - When a string barely strong enough lifts a heavy...Ch. 4 - A large crate is suspended from the end of a...Ch. 4 - Which feels a greater pull due to the earths...Ch. 4 - Why is it incorrect to say that 1.0 kg equals 2.2...Ch. 4 - A horse is hitched to a wagon. Since the wagon...Ch. 4 - True or false? You exert a push P on an object and...Ch. 4 - A large truck and a small compact car have a...Ch. 4 - When a car comes to a stop on a level highway,...Ch. 4 - A small compact car is pushing a large van that...Ch. 4 - Consider a tug-of-war between two people who pull...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A manual for student pilots contains this passage:...Ch. 4 - If your hands are wet and no towel is handy, you...Ch. 4 - If you squat down (such as when you examine the...Ch. 4 - When a car is hit from behind, the occupants may...Ch. 4 - In a head-on auto collision, passengers who are...Ch. 4 - In a head-on collision between a compact 1000-kg...Ch. 4 - Suppose you are in a rocket with no windows,...Ch. 4 - Two dogs pull horizontally on ropes attached to a...Ch. 4 - To extricate an SUV stuck in the mud, workmen use...Ch. 4 - BIO Jaw Injury. Due to a jaw injury, a patient...Ch. 4 - A man is dragging a trunk up the loading ramp of a...Ch. 4 - Forces F1 and F2act at a point. The magnitude of...Ch. 4 - An electron (mass = 9.11 1031 kg) leaves one end...Ch. 4 - A 68.5-kg skater moving initially at 2.40 m/s on...Ch. 4 - You walk into an elevator, step onto a scale, and...Ch. 4 - A box rests on a frozen pond, which serves as a...Ch. 4 - A dockworker applies a constant horizontal force...Ch. 4 - A hockey puck with mass 0.160 kg is at rest at the...Ch. 4 - A crate with mass 32.5 kg initially at rest on a...Ch. 4 - A 4.50-kg experimental cart undergoes an...Ch. 4 - A 2.75-kg cat moves in a straight line (the...Ch. 4 - A small 8.00-kg rocket burns fuel that exerts a...Ch. 4 - An astronauts pack weighs 17.5 N when she is on...Ch. 4 - Superman throws a 2400-N boulder at an adversary....Ch. 4 - BIO (a) An ordinary flea has a mass of 210 g. How...Ch. 4 - At the surface of Jupiters moon Io, the...Ch. 4 - A small car of mass 380 kg is pushing a large...Ch. 4 - BIO World-class sprinters can accelerate out of...Ch. 4 - The upward normal force exerted by the floor is...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A student of mass 45 kg jumps off a high diving...Ch. 4 - Section 4.6 Free-Body Diagrams 4.25Crates A and B...Ch. 4 - You pull horizontally on block B in Fig. F4.26,...Ch. 4 - A ball is hanging from a long siring that is tied...Ch. 4 - CP A .22-caliber rifle bullet traveling at 350 m/s...Ch. 4 - A chair of mass 12.0 kg is sitting on the...Ch. 4 - A large box containing your new computer sits on...Ch. 4 - CP A 5.60-kg bucket of water is accelerated upward...Ch. 4 - CP You have just landed on Planet X. You release a...Ch. 4 - Two adults and a child want to push a wheeled cart...Ch. 4 - CP An oil tankers engines have broken down, and...Ch. 4 - CP BIO A Standing Vertical Jump. Basketball player...Ch. 4 - CP An advertisement claims that a particular...Ch. 4 - BIO Human Biomechanics. The fastest pitched...Ch. 4 - BIO Human Biomechanics. The fastest served tennis...Ch. 4 - Two crates, one with mass 4.00 kg and the other...Ch. 4 - CP Two blocks connected by a light horizontal rope...Ch. 4 - CALC To study damage to aircraft that collide with...Ch. 4 - CP A 6.50-kg instrument is hanging by a vertical...Ch. 4 - BIO Insect Dynamics. The froghopper (Philaenus...Ch. 4 - A loaded elevator with very worn cables has a...Ch. 4 - CP After an annual checkup, you leave your...Ch. 4 - CP A nail in a pine board stops a 4.9-N hammer...Ch. 4 - CP Jumping to the Ground. A 75.0-kg man steps off...Ch. 4 - The two blocks in Fig. P4.48 are connected by a...Ch. 4 - CP Boxes A and B are connected to each end of a...Ch. 4 - CP Extraterrestrial Physics. You have landed on an...Ch. 4 - CP CALC A mysterious rocket-propelled object of...Ch. 4 - CALC The position of a training helicopter (weight...Ch. 4 - DATA The table gives automobile performance data...Ch. 4 - DATA An 8.00-kg box sits on a level floor. You...Ch. 4 - DATA You are a Starfleet captain going boldly...Ch. 4 - Prob. 4.56CPCh. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCERS BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - The forces on a dancer can be measured directly...
Additional Science Textbook Solutions
Find more solutions based on key concepts
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
What are the two types of bone marrow, and what are their functions?
Human Anatomy & Physiology (2nd Edition)
25. The 100 kg block in FIGURE EX7.25 takes 6.0 s to reach the floor after being released from rest. What is th...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
What characteristic of the sex chromosomes allowed Morgan to correlate their behavior with that of the alleles ...
Campbell Biology (11th Edition)
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
The number of named species is about __________, but the actual number of species on Earth is estimated to be a...
Biology: Life on Earth (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- helparrow_forwardIf the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)arrow_forwardTruck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) How much work is done in compressing the springs? ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. Jarrow_forward
- A spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m m 0 k wwwwarrow_forwardA block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. Ө m i (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s² Direction O up the incline down the inclinearrow_forward(a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. -A 3.00 m B C -6.00 m i (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) marrow_forward
- A ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т m a d T m b i (a) Find the speed of the ball just as it touches the spring. 3.34 m/s (b) Find the force constant of the spring. Your response differs from the correct answer by more than 10%. Double check your calculations. kN/marrow_forwardI need help with questions 1-10 on my solubility curve practice sheet. I tried to my best ability on the answers, however, i believe they are wrong and I would like to know which ones a wrong and just need help figuring it out.arrow_forwardQuestion: For a liquid with typical values a = 10-3K-¹ K = 10-4 bar-1 V=50 cm³ mol-1, Cp 200 J mol-1K-1, calculate the following quantities at 300 K and 1 bar for one mole of gas: 1. () P ән 2. (9) T 3. (V) T 4. (1) P 5. (9) T 6. Cv 7. (OF)Tarrow_forward
- A,B,C AND Darrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward210. Sometimes the Helmholtz free energy F(T, V, N) divided by temperature, T, is an interesting quantity. For example, the quantity is proportional to the logarithm of the equilibrium constant or solubilities. A. Derive a relationship showing that Find the constant of proportionality. a F αυ ƏT T B. Suppose F(T) depends on temperature in the following way: F(T)=2aT²+bT. Find S(T) and U(T).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY