Linear Algebra With Applications (classic Version)
5th Edition
ISBN: 9780135162972
Author: BRETSCHER, OTTO
Publisher: Pearson Education, Inc.,
expand_more
expand_more
format_list_bulleted
Question
Chapter 4.2, Problem 73E
To determine
To check: whether the linear transformation
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(6) ≤
a) Determine the following groups:
Homz(Q, Z),
Homz(Q, Q),
Homz(Q/Z, Z)
for n E N.
Homz(Z/nZ, Q)
b) Show for ME MR: HomR (R, M) = M.
1. If f(x² + 1) = x + 5x² + 3, what is f(x² - 1)?
2. What is the total length of the shortest path that goes from (0,4) to a point on the x-axis, then to a point on the
line y = 6, then to (18.4)?
Chapter 4 Solutions
Linear Algebra With Applications (classic Version)
Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...
Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Prob. 31ECh. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Prob. 33ECh. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Prob. 35ECh. 4.1 - Prob. 36ECh. 4.1 - Prob. 37ECh. 4.1 - Prob. 38ECh. 4.1 - Prob. 39ECh. 4.1 - If c is any vector in n , what are the possible...Ch. 4.1 - Prob. 41ECh. 4.1 - Prob. 42ECh. 4.1 - Prob. 43ECh. 4.1 - Prob. 44ECh. 4.1 - Prob. 45ECh. 4.1 - In the linear space of infinite sequences,...Ch. 4.1 - A function f(t) from to is called even if...Ch. 4.1 - Prob. 48ECh. 4.1 - Let L(m,n) be the set of all linear...Ch. 4.1 - Prob. 50ECh. 4.1 - Prob. 51ECh. 4.1 - Make up a second-order linear DE whose solution...Ch. 4.1 - Show that in an n-dimensional linear space we can...Ch. 4.1 - Show that if W is a subspace of an n-dimensional...Ch. 4.1 - Show that the space F(,) of all functions from to...Ch. 4.1 - Show that the space of infinite sequences of real...Ch. 4.1 - We say that a linear space V is finitely generated...Ch. 4.1 - In this exercise we will show that the functions...Ch. 4.1 - Show that if 0 is the neutral element of a linear...Ch. 4.1 - Consider the sequence (f0,f1,f2) recursively...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 15ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Prob. 19ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 21ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 23ECh. 4.2 - Prob. 24ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 35ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 41ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 46ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 48ECh. 4.2 - Prob. 49ECh. 4.2 - Prob. 50ECh. 4.2 - Prob. 51ECh. 4.2 - Prob. 52ECh. 4.2 - Find the image, rank, kernel, and nullity of the...Ch. 4.2 - Find the image, rank, kernel, and nullity of the...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - Find the image, rank, kernel, and nullity of the...Ch. 4.2 - Find the kernel and nullity of the transformation...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - For the transformation T in Exercise 23, find the...Ch. 4.2 - For the transformation T in Exercise 42, find the...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - Define an isomorphism from P3 to 3 , if you can.Ch. 4.2 - Define an isomorphism from P3 to 22 , if you can.Ch. 4.2 - We will define a transformation T from nm to...Ch. 4.2 - Find the kernel and nullity of the linear...Ch. 4.2 - For which constants k is the linear transformation...Ch. 4.2 - For which constants k is the linear transformation...Ch. 4.2 - If matrix A is similar to B, is T(M)=AMMB an...Ch. 4.2 - For which real numbers co, c0,c1,...,cn is the...Ch. 4.2 - Prob. 71ECh. 4.2 - Prob. 72ECh. 4.2 - Prob. 73ECh. 4.2 - In Exercises 72 through 74, let Znbe the set of...Ch. 4.2 - Prob. 75ECh. 4.2 - Prob. 76ECh. 4.2 - Prob. 77ECh. 4.2 - Let + be the set of positive real numbers. On + we...Ch. 4.2 - Prob. 79ECh. 4.2 - Prob. 80ECh. 4.2 - Prob. 81ECh. 4.2 - Prob. 82ECh. 4.2 - Consider linear transformations T from V to W and...Ch. 4.2 - Prob. 84ECh. 4.3 - GOAL Use the concept of coordinates. Find the...Ch. 4.3 - GOAL Use the concept of coordinates. Find the...Ch. 4.3 - Do the polynomials...Ch. 4.3 - Consider the polynomials f(t)=t+1 and...Ch. 4.3 - Prob. 5ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 7ECh. 4.3 - Prob. 8ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 11ECh. 4.3 - Prob. 12ECh. 4.3 - Prob. 13ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 15ECh. 4.3 - Prob. 16ECh. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 - Prob. 19ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 21ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 25ECh. 4.3 - Prob. 26ECh. 4.3 - Prob. 27ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 29ECh. 4.3 - Prob. 30ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 32ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 34ECh. 4.3 - Prob. 35ECh. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.3 - Prob. 38ECh. 4.3 - Prob. 39ECh. 4.3 - Prob. 40ECh. 4.3 - Prob. 41ECh. 4.3 - Prob. 42ECh. 4.3 - Prob. 43ECh. 4.3 - a. Find the change of basis matrix S from the...Ch. 4.3 - Prob. 45ECh. 4.3 - a. Find the change of basis matrix S from the...Ch. 4.3 - a. Find the change of basis matrix S from the...Ch. 4.3 - Prob. 48ECh. 4.3 - Prob. 49ECh. 4.3 - In Exercises 48 through 53, let V be the space...Ch. 4.3 - Prob. 51ECh. 4.3 - Prob. 52ECh. 4.3 - Prob. 53ECh. 4.3 - In Exercises 54 through 58, let V be the plane...Ch. 4.3 - Prob. 55ECh. 4.3 - Prob. 56ECh. 4.3 - Prob. 57ECh. 4.3 - Prob. 58ECh. 4.3 - Consider a linear transformation T from V to V...Ch. 4.3 - In the plane V defined by the equation 2x1+x22x3=0...Ch. 4.3 - Prob. 61ECh. 4.3 - Prob. 62ECh. 4.3 - Prob. 63ECh. 4.3 - Let V be the space of all upper triangular 22...Ch. 4.3 - Let V be the subspace of 22 spanned by the...Ch. 4.3 - Prob. 66ECh. 4.3 - Let V be the linear space of all functions of the...Ch. 4.3 - Consider the linear space V of all infinite...Ch. 4.3 - Consider a basis f1,...,fn , of Pn1.Let a1,...,an...Ch. 4.3 - Prob. 70ECh. 4.3 - Prob. 71ECh. 4.3 - In all parts of this problem, let V be the set of...Ch. 4.3 - Prob. 73ECh. 4 - The polynomials of degree less than 7 form a seven...Ch. 4 - Prob. 2ECh. 4 - Prob. 3ECh. 4 - Prob. 4ECh. 4 - The space 23 is five-dimensional.Ch. 4 - Prob. 6ECh. 4 - Prob. 7ECh. 4 - Prob. 8ECh. 4 - If W1 and W2 are subspaces of a linear space V,...Ch. 4 - If T is a linear transformation from P6 to 22 ,...Ch. 4 - Prob. 11ECh. 4 - Prob. 12ECh. 4 - Prob. 13ECh. 4 - All linear transformations from P3 to 22 are...Ch. 4 - If T is a linear transformation from V to V, then...Ch. 4 - Prob. 16ECh. 4 - Every polynomial of degree 3 can be expressed as a...Ch. 4 - a linear space V can be spanned by 10 elements,...Ch. 4 - Prob. 19ECh. 4 - There exists a 22 matrix A such that the space V...Ch. 4 - Prob. 21ECh. 4 - Prob. 22ECh. 4 - Prob. 23ECh. 4 - Prob. 24ECh. 4 - Prob. 25ECh. 4 - Prob. 26ECh. 4 - Prob. 27ECh. 4 - Prob. 28ECh. 4 - Prob. 29ECh. 4 - Prob. 30ECh. 4 - If W is a subspace of V, and if W is finite...Ch. 4 - Prob. 32ECh. 4 - Prob. 33ECh. 4 - Prob. 34ECh. 4 - Prob. 35ECh. 4 - Prob. 36ECh. 4 - Prob. 37ECh. 4 - Prob. 38ECh. 4 - Prob. 39ECh. 4 - Prob. 40ECh. 4 - Prob. 41ECh. 4 - The transformation D(f)=f from C to C is an...Ch. 4 - If T is a linear transformation from P4 to W with...Ch. 4 - The kernel of the linear transformation...Ch. 4 - If T is a linear transformation from V to V, then...Ch. 4 - If T is a linear transformation from P6 to P6 that...Ch. 4 - There exist invertible 22 matrices P and Q such...Ch. 4 - There exists a linear transformation from P6 to ...Ch. 4 - If f1,f2,f3 is a basis of a linear space V, and if...Ch. 4 - There exists a two-dimensional subspace of 22...Ch. 4 - The space P11 is isomorphic to 34 .Ch. 4 - If T is a linear transformation from V to W, and...Ch. 4 - If T is a linear transformation from V to 22 with...Ch. 4 - The function T(f(t))=ddt23t+4f(x)dx from P5 to P5...Ch. 4 - Any four-dimensional linear space has infinitely...Ch. 4 - If the matrix of a linear transformation T (with...Ch. 4 - If the image of a linear transformation T is...Ch. 4 - There exists a 22 matrix A such that the space of...Ch. 4 - If A, B, C, and D are noninvertible 22 matrices,...Ch. 4 - There exist two distinct three-dimensional...Ch. 4 - the elements f1,...,fn , (where f10 ) are linearly...Ch. 4 - There exists a 33 matrix P such that the linear...Ch. 4 - If f1,f2,f3,f4,f5 are elements of a linear space...Ch. 4 - There exists a linear transformation T from P6 to...Ch. 4 - If T is a linear transformation from V to W, and...Ch. 4 - If the matrix of a linear transformation T (with...Ch. 4 - Every three-dimensional subspace of 22 contains at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- موضوع الدرس Prove that Determine the following groups Homz(QZ) Hom = (Q13,Z) Homz(Q), Hom/z/nZ, Qt for neN- (2) Every factor group of adivisible group is divisble. • If R is a Skew ficald (aring with identity and each non Zero element is invertible then every R-module is free.arrow_forwardI have ai answers but incorrectarrow_forwardwhat is the slope of the linear equation-5x+2y-10=0arrow_forward
- ************* ********************************* Q.1) Classify the following statements as a true or false statements: a. If M is a module, then every proper submodule of M is contained in a maximal submodule of M. b. The sum of a finite family of small submodules of a module M is small in M. c. Zz is directly indecomposable. d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M. e. The Z-module has two composition series. Z 6Z f. Zz does not have a composition series. g. Any finitely generated module is a free module. h. If O→A MW→ 0 is short exact sequence then f is epimorphism. i. If f is a homomorphism then f-1 is also a homomorphism. Maximal C≤A if and only if is simple. Sup Q.4) Give an example and explain your claim in each case: Monomorphism not split. b) A finite free module. c) Semisimple module. d) A small submodule A of a module N and a homomorphism op: MN, but (A) is not small in M.arrow_forwardI need diagram with solutionsarrow_forwardT. Determine the least common denominator and the domain for the 2x-3 10 problem: + x²+6x+8 x²+x-12 3 2x 2. Add: + Simplify and 5x+10 x²-2x-8 state the domain. 7 3. Add/Subtract: x+2 1 + x+6 2x+2 4 Simplify and state the domain. x+1 4 4. Subtract: - Simplify 3x-3 x²-3x+2 and state the domain. 1 15 3x-5 5. Add/Subtract: + 2 2x-14 x²-7x Simplify and state the domain.arrow_forward
- Q.1) Classify the following statements as a true or false statements: Q a. A simple ring R is simple as a right R-module. b. Every ideal of ZZ is small ideal. very den to is lovaginz c. A nontrivial direct summand of a module cannot be large or small submodule. d. The sum of a finite family of small submodules of a module M is small in M. e. The direct product of a finite family of projective modules is projective f. The sum of a finite family of large submodules of a module M is large in M. g. Zz contains no minimal submodules. h. Qz has no minimal and no maximal submodules. i. Every divisible Z-module is injective. j. Every projective module is a free module. a homomorp cements Q.4) Give an example and explain your claim in each case: a) A module M which has a largest proper submodule, is directly indecomposable. b) A free subset of a module. c) A finite free module. d) A module contains no a direct summand. e) A short split exact sequence of modules.arrow_forwardListen ANALYZING RELATIONSHIPS Describe the x-values for which (a) f is increasing or decreasing, (b) f(x) > 0 and (c) f(x) <0. y Af -2 1 2 4x a. The function is increasing when and decreasing whenarrow_forwardBy forming the augmented matrix corresponding to this system of equations and usingGaussian elimination, find the values of t and u that imply the system:(i) is inconsistent.(ii) has infinitely many solutions.(iii) has a unique solutiona=2 b=1arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Linear Transformations on Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=is1cg5yhdds;License: Standard YouTube License, CC-BY
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY