Linear Algebra With Applications (classic Version)
5th Edition
ISBN: 9780135162972
Author: BRETSCHER, OTTO
Publisher: Pearson Education, Inc.,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4.3, Problem 47E
a. Find the change of basis matrix S from the basis considered in Exercise 28 to the standard basis
b. Verify the formula
c. Find the change of basis matrix from
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How many quadrillion BTU were generated using renewable energy sources?
Use the graphs to find estimates for the solutions of the simultaneous equations.
21:46 MM
:
0 % sparxmaths.uk/studer
Sparx Maths
+
13
24,963 XP Andrey Roura
1A ✓
1B X
1C
1D
Summary
Bookwork code: 1B
歐
Calculator
not allowed
Write the ratio 3
: 1½ in its simplest form.
32
Menu
Chapter 4 Solutions
Linear Algebra With Applications (classic Version)
Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - GOAL Find a basis of a linear space and thus...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...
Ch. 4.1 - Which of the subsets V of 33given in Exercises 6...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Let V be the space of all infinite sequences of...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Prob. 31ECh. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Prob. 33ECh. 4.1 - Find a basis for each of the spaces V in Exercises...Ch. 4.1 - Prob. 35ECh. 4.1 - Prob. 36ECh. 4.1 - Prob. 37ECh. 4.1 - Prob. 38ECh. 4.1 - Prob. 39ECh. 4.1 - If c is any vector in n , what are the possible...Ch. 4.1 - Prob. 41ECh. 4.1 - Prob. 42ECh. 4.1 - Prob. 43ECh. 4.1 - Prob. 44ECh. 4.1 - Prob. 45ECh. 4.1 - In the linear space of infinite sequences,...Ch. 4.1 - A function f(t) from to is called even if...Ch. 4.1 - Prob. 48ECh. 4.1 - Let L(m,n) be the set of all linear...Ch. 4.1 - Prob. 50ECh. 4.1 - Prob. 51ECh. 4.1 - Make up a second-order linear DE whose solution...Ch. 4.1 - Show that in an n-dimensional linear space we can...Ch. 4.1 - Show that if W is a subspace of an n-dimensional...Ch. 4.1 - Show that the space F(,) of all functions from to...Ch. 4.1 - Show that the space of infinite sequences of real...Ch. 4.1 - We say that a linear space V is finitely generated...Ch. 4.1 - In this exercise we will show that the functions...Ch. 4.1 - Show that if 0 is the neutral element of a linear...Ch. 4.1 - Consider the sequence (f0,f1,f2) recursively...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 15ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Prob. 19ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 21ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 23ECh. 4.2 - Prob. 24ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 35ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 41ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 46ECh. 4.2 - Find out which of the transformations in Exercises...Ch. 4.2 - Prob. 48ECh. 4.2 - Prob. 49ECh. 4.2 - Prob. 50ECh. 4.2 - Prob. 51ECh. 4.2 - Prob. 52ECh. 4.2 - Find the image, rank, kernel, and nullity of the...Ch. 4.2 - Find the image, rank, kernel, and nullity of the...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - Find the image, rank, kernel, and nullity of the...Ch. 4.2 - Find the kernel and nullity of the transformation...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - For the transformation T in Exercise 23, find the...Ch. 4.2 - For the transformation T in Exercise 42, find the...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - Find the image and kernel of the transformation T...Ch. 4.2 - Define an isomorphism from P3 to 3 , if you can.Ch. 4.2 - Define an isomorphism from P3 to 22 , if you can.Ch. 4.2 - We will define a transformation T from nm to...Ch. 4.2 - Find the kernel and nullity of the linear...Ch. 4.2 - For which constants k is the linear transformation...Ch. 4.2 - For which constants k is the linear transformation...Ch. 4.2 - If matrix A is similar to B, is T(M)=AMMB an...Ch. 4.2 - For which real numbers co, c0,c1,...,cn is the...Ch. 4.2 - Prob. 71ECh. 4.2 - Prob. 72ECh. 4.2 - Prob. 73ECh. 4.2 - In Exercises 72 through 74, let Znbe the set of...Ch. 4.2 - Prob. 75ECh. 4.2 - Prob. 76ECh. 4.2 - Prob. 77ECh. 4.2 - Let + be the set of positive real numbers. On + we...Ch. 4.2 - Prob. 79ECh. 4.2 - Prob. 80ECh. 4.2 - Prob. 81ECh. 4.2 - Prob. 82ECh. 4.2 - Consider linear transformations T from V to W and...Ch. 4.2 - Prob. 84ECh. 4.3 - GOAL Use the concept of coordinates. Find the...Ch. 4.3 - GOAL Use the concept of coordinates. Find the...Ch. 4.3 - Do the polynomials...Ch. 4.3 - Consider the polynomials f(t)=t+1 and...Ch. 4.3 - Prob. 5ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 7ECh. 4.3 - Prob. 8ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 11ECh. 4.3 - Prob. 12ECh. 4.3 - Prob. 13ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 15ECh. 4.3 - Prob. 16ECh. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 - Prob. 19ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 21ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 25ECh. 4.3 - Prob. 26ECh. 4.3 - Prob. 27ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 29ECh. 4.3 - Prob. 30ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 32ECh. 4.3 - In Exercises 5 through 40, find the matrix of the...Ch. 4.3 - Prob. 34ECh. 4.3 - Prob. 35ECh. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.3 - Prob. 38ECh. 4.3 - Prob. 39ECh. 4.3 - Prob. 40ECh. 4.3 - Prob. 41ECh. 4.3 - Prob. 42ECh. 4.3 - Prob. 43ECh. 4.3 - a. Find the change of basis matrix S from the...Ch. 4.3 - Prob. 45ECh. 4.3 - a. Find the change of basis matrix S from the...Ch. 4.3 - a. Find the change of basis matrix S from the...Ch. 4.3 - Prob. 48ECh. 4.3 - Prob. 49ECh. 4.3 - In Exercises 48 through 53, let V be the space...Ch. 4.3 - Prob. 51ECh. 4.3 - Prob. 52ECh. 4.3 - Prob. 53ECh. 4.3 - In Exercises 54 through 58, let V be the plane...Ch. 4.3 - Prob. 55ECh. 4.3 - Prob. 56ECh. 4.3 - Prob. 57ECh. 4.3 - Prob. 58ECh. 4.3 - Consider a linear transformation T from V to V...Ch. 4.3 - In the plane V defined by the equation 2x1+x22x3=0...Ch. 4.3 - Prob. 61ECh. 4.3 - Prob. 62ECh. 4.3 - Prob. 63ECh. 4.3 - Let V be the space of all upper triangular 22...Ch. 4.3 - Let V be the subspace of 22 spanned by the...Ch. 4.3 - Prob. 66ECh. 4.3 - Let V be the linear space of all functions of the...Ch. 4.3 - Consider the linear space V of all infinite...Ch. 4.3 - Consider a basis f1,...,fn , of Pn1.Let a1,...,an...Ch. 4.3 - Prob. 70ECh. 4.3 - Prob. 71ECh. 4.3 - In all parts of this problem, let V be the set of...Ch. 4.3 - Prob. 73ECh. 4 - The polynomials of degree less than 7 form a seven...Ch. 4 - Prob. 2ECh. 4 - Prob. 3ECh. 4 - Prob. 4ECh. 4 - The space 23 is five-dimensional.Ch. 4 - Prob. 6ECh. 4 - Prob. 7ECh. 4 - Prob. 8ECh. 4 - If W1 and W2 are subspaces of a linear space V,...Ch. 4 - If T is a linear transformation from P6 to 22 ,...Ch. 4 - Prob. 11ECh. 4 - Prob. 12ECh. 4 - Prob. 13ECh. 4 - All linear transformations from P3 to 22 are...Ch. 4 - If T is a linear transformation from V to V, then...Ch. 4 - Prob. 16ECh. 4 - Every polynomial of degree 3 can be expressed as a...Ch. 4 - a linear space V can be spanned by 10 elements,...Ch. 4 - Prob. 19ECh. 4 - There exists a 22 matrix A such that the space V...Ch. 4 - Prob. 21ECh. 4 - Prob. 22ECh. 4 - Prob. 23ECh. 4 - Prob. 24ECh. 4 - Prob. 25ECh. 4 - Prob. 26ECh. 4 - Prob. 27ECh. 4 - Prob. 28ECh. 4 - Prob. 29ECh. 4 - Prob. 30ECh. 4 - If W is a subspace of V, and if W is finite...Ch. 4 - Prob. 32ECh. 4 - Prob. 33ECh. 4 - Prob. 34ECh. 4 - Prob. 35ECh. 4 - Prob. 36ECh. 4 - Prob. 37ECh. 4 - Prob. 38ECh. 4 - Prob. 39ECh. 4 - Prob. 40ECh. 4 - Prob. 41ECh. 4 - The transformation D(f)=f from C to C is an...Ch. 4 - If T is a linear transformation from P4 to W with...Ch. 4 - The kernel of the linear transformation...Ch. 4 - If T is a linear transformation from V to V, then...Ch. 4 - If T is a linear transformation from P6 to P6 that...Ch. 4 - There exist invertible 22 matrices P and Q such...Ch. 4 - There exists a linear transformation from P6 to ...Ch. 4 - If f1,f2,f3 is a basis of a linear space V, and if...Ch. 4 - There exists a two-dimensional subspace of 22...Ch. 4 - The space P11 is isomorphic to 34 .Ch. 4 - If T is a linear transformation from V to W, and...Ch. 4 - If T is a linear transformation from V to 22 with...Ch. 4 - The function T(f(t))=ddt23t+4f(x)dx from P5 to P5...Ch. 4 - Any four-dimensional linear space has infinitely...Ch. 4 - If the matrix of a linear transformation T (with...Ch. 4 - If the image of a linear transformation T is...Ch. 4 - There exists a 22 matrix A such that the space of...Ch. 4 - If A, B, C, and D are noninvertible 22 matrices,...Ch. 4 - There exist two distinct three-dimensional...Ch. 4 - the elements f1,...,fn , (where f10 ) are linearly...Ch. 4 - There exists a 33 matrix P such that the linear...Ch. 4 - If f1,f2,f3,f4,f5 are elements of a linear space...Ch. 4 - There exists a linear transformation T from P6 to...Ch. 4 - If T is a linear transformation from V to W, and...Ch. 4 - If the matrix of a linear transformation T (with...Ch. 4 - Every three-dimensional subspace of 22 contains at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Use the graph to solve 3x2-3x-8=0arrow_forwardÎntr-un bloc sunt apartamente cu 2 camere și apartamente cu 3 camere , în total 20 de apartamente și 45 de camere.Calculați câte apartamente sunt cu 2 camere și câte apartamente sunt cu 3 camere.arrow_forward1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forward
- Question 3 over a field K. In this question, MË(K) denotes the set of n × n matrices (a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is equivalent to A-¹? Justify your answer. (b) Let B be given by 8 B = 0 7 7 0 -7 7 Working over the field F2 with 2 elements, compute the rank of B as an element of M2(F2). (c) Let 1 C -1 1 [4] [6] and consider C as an element of M3(Q). Determine the minimal polynomial mc(x) and hence, or otherwise, show that C can not be diagonalised. [7] (d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write down all the eigenvalues. Show your working. [8]arrow_forwardR denotes the field of real numbers, Q denotes the field of rationals, and Fp denotes the field of p elements given by integers modulo p. You may refer to general results from lectures. Question 1 For each non-negative integer m, let R[x]m denote the vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m. x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent (a) Let vi = x, V2 = list in R[x] 3. (b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4) is a basis of R[x] 3. [8] [6] (c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a linear map. [6] (d) Write down the matrix for the map ƒ defined in (c) with respect to the basis (2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3. [5]arrow_forwardQuestion 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forward
- part b pleasearrow_forwardQuestion 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forwardQuestion 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forward
- Tools Sign in Different masses and Indicated velocities Rotational inert > C C Chegg 39. The balls shown have different masses and speeds. Rank the following from greatest to least: 2.0 m/s 8.5 m/s 9.0 m/s 12.0 m/s 1.0 kg A 1.2 kg B 0.8 kg C 5.0 kg D C a. The momenta b. The impulses needed to stop the balls Solved 39. The balls shown have different masses and speeds. | Chegg.com Images may be subject to copyright. Learn More Share H Save Visit > quizlet.com%2FBoyE3qwOAUqXvw95Fgh5Rw.jpg&imgrefurl=https%3A%2F%2Fquizlet.com%2F529359992%2Fc. Xarrow_forwardSimplify the below expression. 3 - (-7)arrow_forward(6) ≤ a) Determine the following groups: Homz(Q, Z), Homz(Q, Q), Homz(Q/Z, Z) for n E N. Homz(Z/nZ, Q) b) Show for ME MR: HomR (R, M) = M.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Linear Transformations on Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=is1cg5yhdds;License: Standard YouTube License, CC-BY
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY