Concept explainers
Reminder Round all answers to two decimal places unless otherwise indicated.
Continuous Compounding This is a continuation of Exercise 22. In this exercise, we examine the relationship between APR and the APY when interest is compounded continuously-in other words, at every instant. We will see by means of an example that the relationship is
and so
if both the APR and the APY are in decimal form and interest is compounded continuously. Assume that the APR is
a. The yearly growth factor for continuous compounding is just the limiting value of the function given by the formula in part b of Exercise 22. Find that limiting value to four decimal places.
b. Compute
c. Use your answers to parts a and b to verify that Equation (4.1) holds in the case where the APR is
Note: On the basis of part a, one conclusion is that there is a limit to the increase in the yearly growth factor (and hence in the APY) as the number of compounding periods increases. We might have expected the APY to increase without limit for more and more frequent compounding.
22. APR and APY Recall that financial institutions sometimes report the annual interest rate that they offer on investments as the APR, often called the nominal interest rate. To indicate how an investment will actually grow, they advertise the annual percentage yield, or APY. In mathematical terms, this is the yearly percentage growth rate for the exponential function that models the account balance. In this exercise and the next, we study the relationship between the APR and the APY. We assume that the APR is 10%. or 0.1 as a decimal.
To determine the APY when we know the APR, we need to know how often interest is compounded. For example, suppose for the moment that interest is compounded twice a year. Then to say that the APR is 10% means that in half a year, the balance grows by
a. What is the yearly growth factor if interest is compounded four times a year?
b. Assume that interest is compounded
c. What is the yearly growth factor if interest is compounded daily? Give your answer to four decimal places.
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Functions and Change: A Modeling Approach to College Algebra (MindTap Course List)
- Sales of a video game released in the year 2000 took off at first, but then steadily slowed as time moved on. Table 4 shows the number of games sold, in thousands, from the years 20002010. a. Let x represent time in years starting with x=1 for the year 2000. Let y represent the number of games sold in thousands. Use logarithmic regression to fit a model to these data. b. If games continue to sell at this rate, how many games will sell in 2015? Round to the nearest thousand.arrow_forwardThe fox population in a certain region has an annualgrowth rate of 9 per year. In the year 2012, therewere 23,900 fox counted in the area. What is the foxpopulation predicted to be in the year 2020 ?arrow_forwardExponential Decay Is the graph of exponential decay versus time increasing or decreasing?arrow_forward
- Exponential Growth Is the graph of exponential growth versus time increasing or decreasing?arrow_forwardMore on the Pacific Sardine This is a continuation of Example 5.1. In this exercise, we explore the Pacific sardine population further, using the model in Example 5.1. a. If the current level of the Pacific sardine population is 50,000 tons, how long will it take for the population to recover to the optimum growth level of 1.2milliontons? Suggestion: One way to solve this is to make a new logistic formula using K2.4, r0.338, and N(0)0.05. b. The value of r used in Example 5.1 ignores the effects of fishing. If fishing mortality is taken into account, then r drops to 0.215 per year with the carrying capacity still at 2.4milliontons. Answer the question in part a using this lower value of r. Note: The population estimate of 50,000 tons and the adjusted value of r are given in the paper by Murphy see footnote 3 on page 347. Murphy points out that factoring in the growth of the competing anchovy population makes the recovery times even longer, and he adds. "It is disconcerting to realize how slowly the population will recover to its level of maximum productivity ... even if fishing stops." Studies to fit a logistic model to the Pacific sardine population have yielded. N=241+239e0.338t where t is measured in years and N is measured in millions of tons of fish. Part 1 What is r for the Pacific sardine? Part 2 According to the logistic model, in the absence of limiting factors, what would be the annual percentage growth rate for the Pacific sardine? Part 3 What is the environmental carrying capacity K? Part 4 What is the optimum yield level? Part 5 Make a graph of N versus t. Part 6 At what time t should the population he harvested? Part 7 What portion of the graph is concave up? What portion is concave down?arrow_forwardExponential Growth What is the concavity of a graph showing exponential growth?arrow_forward
- HOW DO YOU SEE IT? Identify each model as exponential growth, exponential decay, Gaussian, linear, logarithmic, logistic growth, quadratic, or none of the above. Explain your reasoning.arrow_forwardTEST YOUR UNDERSTANDING Another fish population follows the logistic function N=6.21+188e0.44tmilliontons What is the carrying capacity? What is the initial population? In the absence of limiting factors, what would be the annual percentage growth rate?arrow_forwardThe table shows the mid-year populations (in millions) of five countries in 2015 and the projected populations (in millions) for the year 2025. (a) Find the exponential growth or decay model y=aebt or y=aebt for the population of each country by letting t=15 correspond to 2015. Use the model to predict the population of each country in 2035. (b) You can see that the populations of the United States and the United Kingdom are growing at different rates. What constant in the equation y=aebt gives the growth rate? Discuss the relationship between the different growth rates and the magnitude of the constant.arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning