
Differential Equations: An Introduction to Modern Methods and Applications
3rd Edition
ISBN: 9781118531778
Author: James R. Brannan, William E. Boyce
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.2, Problem 18P
If the Wronskian
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Example: For what odd primes p is 11 a quadratic residue modulo p?
Solution:
This is really asking "when is (11 | p) =1?"
First, 11 = 3 (mod 4). To use LQR, consider two cases p = 1 or 3 (mod 4):
p=1 We have 1 = (11 | p) = (p | 11), so p is a quadratic residue modulo 11. By
brute force:
121, 224, 3² = 9, 4² = 5, 5² = 3 (mod 11)
so the quadratic residues mod 11 are 1,3,4,5,9.
Using CRT for p = 1 (mod 4) & p = 1,3,4,5,9 (mod 11).
p = 1
(mod 4)
&
p = 1
(mod 11
gives p
1
(mod 44).
p = 1
(mod 4)
&
p = 3
(mod 11)
gives p25
(mod 44).
p = 1
(mod 4)
&
p = 4
(mod 11)
gives p=37
(mod 44).
p = 1
(mod 4)
&
p = 5
(mod 11)
gives p
5
(mod 44).
p = 1
(mod 4)
&
p=9
(mod 11)
gives p
9
(mod 44).
So p =1,5,9,25,37 (mod 44).
Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)
Jamal wants to save $48,000 for a down payment on a home. How much will he need to invest in an
account with 11.8% APR, compounding daily, in order to reach his goal in 10 years? Round to the
nearest dollar.
Chapter 4 Solutions
Differential Equations: An Introduction to Modern Methods and Applications
Ch. 4.1 - In Problems 1 through 7, determine whether the...Ch. 4.1 - In Problems 1 through 7, determine whether the...Ch. 4.1 - In Problems 1 through 7, determine whether the...Ch. 4.1 - In Problems 1 through 7, determine whether the...Ch. 4.1 - In Problems 1 through 7, determine whether the...Ch. 4.1 - In Problems 1 through 7, determine whether the...Ch. 4.1 - In Problems 1 through 7, determine whether the...Ch. 4.1 - A mass weighing stretches a spring . What is the...Ch. 4.1 - A mass attached to a vertical spring is slowly...Ch. 4.1 - A mass weighing stretches a spring . The mass is...
Ch. 4.1 - A mass of stretches a spring. The mass is set in...Ch. 4.1 - A mass weighing 3lb stretches a spring 3in. The...Ch. 4.1 - A series circuit has a capacitor of 0.25...Ch. 4.1 - A mass of stretches a spring . Suppose that the...Ch. 4.1 - A mass weighing 16lb stretches a spring 3in. The...Ch. 4.1 - A spring is stretched by a force of (N). A mass...Ch. 4.1 - A series circuit has a capacitor of 105farad, a...Ch. 4.1 - Suppose that a mass m slides without friction on a...Ch. 4.1 -
Duffing’s Equation
For the spring-mass system...Ch. 4.1 - A body of mass is attached between two springs...Ch. 4.1 - A cubic block of side and mass density per unit...Ch. 4.1 - In Problems through , we specift the mass, damping...Ch. 4.1 - In Problems 22 through 26, we specift the mass,...Ch. 4.1 - In Problems through , we specift the mass, damping...Ch. 4.1 - In Problems 22 through 26, we specift the mass,...Ch. 4.1 - In Problems 22 through 26, we specift the mass,...Ch. 4.1 - The Linear Versus the Nonlinear Pendulum.
Convert...Ch. 4.1 - (a) Numerical simulations as well as intuition...Ch. 4.2 - In each of the Problems 1 through 8, determine the...Ch. 4.2 - In each of the Problems through, determine the...Ch. 4.2 - In each of the Problems 1 through 8, determine the...Ch. 4.2 - In each of the Problems through, determine the...Ch. 4.2 - In each of the Problems 1 through 8, determine the...Ch. 4.2 - In each of the Problems through, determine the...Ch. 4.2 - In each of the Problems 1 through 8, determine the...Ch. 4.2 - In each of the Problems through, determine the...Ch. 4.2 - In each of the Problems through, find the...Ch. 4.2 - In each of the Problems through, find the...Ch. 4.2 - In each of the Problems through, find the...Ch. 4.2 - In each of the Problems 9 through 14, find the...Ch. 4.2 - In each of the Problems 9 through 14, find the...Ch. 4.2 - In each of the Problems through, find the...Ch. 4.2 - Verify that and are two solutions of the...Ch. 4.2 - Consider the differential operator T defined by...Ch. 4.2 - Can an equation y+p(t)y+q(t)y=0, with continuous...Ch. 4.2 - If the Wronskian W of f and g is 3e2t, and if...Ch. 4.2 - If the Wronskian W of f and g is t2et, and if...Ch. 4.2 - If W[f,g] is the Wronskian of f and g, and if...Ch. 4.2 - If the Wronskian of f and g is tcostsint, and if...Ch. 4.2 - In each of problem 22 through 25, verify that the...Ch. 4.2 - In each of problem 22 through 25, verify that the...Ch. 4.2 - In each of problem 22 through 25, verify that the...Ch. 4.2 - In each of problem 22 through 25, verify that the...Ch. 4.2 - 26. Consider the equation
(a). Show that and ...Ch. 4.2 - 27. Prove Theorem 4.2.4 and Corollary 4.2.5....Ch. 4.2 - In each of problem 28 through 38, use method of...Ch. 4.2 - In each of problem 28 through 38, use method of...Ch. 4.2 - In each of problem 28 through 38, use method of...Ch. 4.2 - In each of problem 28 through 38, use method of...Ch. 4.2 - In each of problem 28 through 38, use method of...Ch. 4.2 - In each of problem 28 through 38, use method of...Ch. 4.2 - In each of problem 28 through 38, use method of...Ch. 4.2 - In each of problem 28 through 38, use method of...Ch. 4.2 - In each of problem 28 through 38, use method of...Ch. 4.2 - 37. The differential equation
Where N is...Ch. 4.2 - The differential equation y+(xy+y)=0 arises in the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26:
(a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26:
(a) Find the...Ch. 4.3 - In each of Problems 1 through 26:
(a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26:
(a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26:
(a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26:
(a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26:
(a) Find the...Ch. 4.3 - In each of Problems 1 through 26:
(a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26: (a) Find the...Ch. 4.3 - In each of Problems 1 through 26:
(a) Find the...Ch. 4.3 - In each of Problems 27 through 43, solve the given...Ch. 4.3 - In each of Problems 27 through 43, solve the given...Ch. 4.3 - In each of Problems 27 through 43, solve the given...Ch. 4.3 - In each of Problems 27 through 43, solve the given...Ch. 4.3 - In each of Problems through, solve the given...Ch. 4.3 - In each of Problems through, solve the given...Ch. 4.3 - In each of Problems 27 through 43, solve the given...Ch. 4.3 - In each of Problems 27 through 43, solve the given...Ch. 4.3 - In each of Problems through, solve the given...Ch. 4.3 - In each of Problems through, solve the given...Ch. 4.3 - In each of Problems 27 through 43, solve the given...Ch. 4.3 - In each of Problems 27 through 43, solve the given...Ch. 4.3 - In each of Problems 27 through 43, solve the given...Ch. 4.3 - In each of Problems 27 through 43, solve the given...Ch. 4.3 - In each of Problems through, solve the given...Ch. 4.3 - In each of Problems 27 through 43, solve the given...Ch. 4.3 - In each of Problems through, solve the given...Ch. 4.3 - Find a differential equation whose general...Ch. 4.3 - Find a differential equation whose general...Ch. 4.3 - Find a differential equation whose general...Ch. 4.3 - In each of Problems and , determine the values of...Ch. 4.3 - In each of Problems 47 and 48, determine the...Ch. 4.3 - If the roots of the characteristic equation are...Ch. 4.3 - Consider the equation ay+by+cy=d, where a,b,c and...Ch. 4.3 - Consider the equation , where and are constants...Ch. 4.3 - Prob. 52PCh. 4.3 - If , use the substitution to show that the...Ch. 4.3 - In each of Problems through, find the general...Ch. 4.3 - In each of Problems 54 through 61, find the...Ch. 4.3 - In each of Problems through, find the general...Ch. 4.3 - In each of Problems through, find the general...Ch. 4.3 - In each of Problems 54 through 61, find the...Ch. 4.3 - In each of Problems through, find the general...Ch. 4.3 - In each of Problems 54 through 61, find the...Ch. 4.3 - In each of Problems through, find the general...Ch. 4.3 - In each of Problems 62 through 65, find the...Ch. 4.3 - In each of Problems through, find the solution of...Ch. 4.3 - In each of Problems through, find the solution of...Ch. 4.3 - In each of Problems through, find the solution of...Ch. 4.4 - In each of Problems through , determine and so...Ch. 4.4 - In each of Problems through , determine and so...Ch. 4.4 - In each of Problems 1 through 4, determine 0,R,...Ch. 4.4 - In each of Problems 1 through 4, determine 0,R,...Ch. 4.4 - (a) A mass weighing lb stretches a spring in. If...Ch. 4.4 - (a) A mass of 100 g stretches a spring 5 cm. If...Ch. 4.4 - A mass weighing 3 lb stretches a spring 3 in. If...Ch. 4.4 - A series circuit has a capacitor of 0.25...Ch. 4.4 - (a) A mass of g stretches a spring cm. Suppose...Ch. 4.4 - A mass weighing 16 lb stretches a spring 3in. The...Ch. 4.4 - (a) A spring is stretched cm by a force of ...Ch. 4.4 - (a) A series circuit has a capacitor of farad, a...Ch. 4.4 - A certain vibrating system satisfies the equation...Ch. 4.4 - Show that the period of motion of an undamped...Ch. 4.4 - Show that the solution of the initial value...Ch. 4.4 - Show that Acos0t+Bsin0t can be written in the form...Ch. 4.4 - A mass weighing 8 lb stretches a spring 1.5 in....Ch. 4.4 - If a series circuit has a capacitor of C=0.8...Ch. 4.4 - Assume that the system described by the equation...Ch. 4.4 - Assume that the system described by the equation...Ch. 4.4 - Logarithmic Decrement For the damped oscillation...Ch. 4.4 - Referring to Problem , find the logarithmic...Ch. 4.4 - For the system in Problem , suppose that and ....Ch. 4.4 - The position of a certain spring-mass system...Ch. 4.4 - Consider the initial value problem . We wish to...Ch. 4.4 - Consider the initial value problem...Ch. 4.4 - Use the differential equation derived in Problem...Ch. 4.4 - Draw the phase portrait for the dynamical system...Ch. 4.4 - The position of a certain undamped spring-mass...Ch. 4.4 - The position of a certain spring-mass system...Ch. 4.4 - In the absence of damping, the motion of a...Ch. 4.4 - If the restoring force of a nonlinear spring...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 1 through 16, find the general...Ch. 4.5 - In each of problems 17 through 22, find the...Ch. 4.5 - In each of problems 17 through 22, find the...Ch. 4.5 - In each of problems 17 through 22, find the...Ch. 4.5 - In each of problems 17 through 22, find the...Ch. 4.5 - In each of problems 17 through 22, find the...Ch. 4.5 - In each of problems 17 through 22, find the...Ch. 4.5 - In each of problems 23 through 30: Determine a...Ch. 4.5 - In each of problems 23 through 30:
Determine a...Ch. 4.5 - In each of problems 23 through 30:
Determine a...Ch. 4.5 - In each of problems 23 through 30: Determine a...Ch. 4.5 - In each of problems 23 through 30: Determine a...Ch. 4.5 - In each of problems 23 through 30:
Determine a...Ch. 4.5 - In each of problems 23 through 30: Determine a...Ch. 4.5 - In each of problems 23 through 30: Determine a...Ch. 4.5 - Consider the equation
(i)
From...Ch. 4.5 - Nonhomogeneous Cauchy-Euler Equations. In each of...Ch. 4.5 - Nonhomogeneous Cauchy-Euler Equations. In each of...Ch. 4.5 - Nonhomogeneous Cauchy-Euler Equations. In each of...Ch. 4.5 - Nonhomogeneous Cauchy-Euler Equations. In each of...Ch. 4.5 - Determine the general solution of
,
Where and ...Ch. 4.5 - In many physical problems, the nonhomogeneous term...Ch. 4.5 - Follow the instructions in Problem 37 to solve the...Ch. 4.6 - In each of Problems 1 through 4, write the given...Ch. 4.6 - In each of Problems 1 through 4, write the given...Ch. 4.6 - In each of Problems 1 through 4, write the given...Ch. 4.6 - In each of Problems 1 through 4, write the given...Ch. 4.6 - A mass weighing 4 pounds (lb) stretches a spring...Ch. 4.6 - A mass of 4 kg stretches a spring 8 cm. The mass...Ch. 4.6 - (a) Find the solution of Problem 5. (b) Plot the...Ch. 4.6 - 8.
Find the solution of the initial value problem...Ch. 4.6 - If an undamped spring-mass system with a mass that...Ch. 4.6 - A mass that weighs 8 lb stretches a spring 24 in....Ch. 4.6 - A spring is stretched 6 in. by a mass that weighs...Ch. 4.6 - A spring-mass system has a spring constant of 3...Ch. 4.6 - Furnish the details in determining when the gain...Ch. 4.6 - Find the solution of the initial value problem...Ch. 4.6 - A series circuit has a capacitor of 0.25...Ch. 4.6 - 16. Consider a vibrating system described by the...Ch. 4.6 - Consider the forced but undamped system described...Ch. 4.6 - Consider the vibrating system described by the...Ch. 4.6 - For the initial value problem in Problem 18, plot ...Ch. 4.6 - Problems 20 through 22 deal with the initial value...Ch. 4.6 - Problems 20 through 22 deal with the initial value...Ch. 4.6 - Problems 20 through 22 deal with the initial value...Ch. 4.6 - A spring-mass system with a hardening spring...Ch. 4.6 - Suppose that the system of Problem 23 is modified...Ch. 4.7 - (a) If
and ,
show that .
(b) Assuming that is...Ch. 4.7 - In each of Problems 2 through 5, use the method of...Ch. 4.7 - In each of Problems 2 through 5, use the method of...Ch. 4.7 - In each of Problems 2 through 5, use the method of...Ch. 4.7 - In each of Problems 2 through 5, use the method of...Ch. 4.7 - In each of Problems 6 through 9, find the solution...Ch. 4.7 - In each of Problems 6 through 9, find the solution...Ch. 4.7 - In each of Problems 6 through 9, find the solution...Ch. 4.7 - In each of Problems 6 through 9, find the solution...Ch. 4.7 - In each of Problems 10 through 13, use the method...Ch. 4.7 - In each of Problems 10 through 13, use the method...Ch. 4.7 - In each of Problems 10 through 13, use the method...Ch. 4.7 - In each of Problems 10 through 13, use the method...Ch. 4.7 - In each of Problems 14 through 21, find the...Ch. 4.7 - In each of Problems 14 through 21, find the...Ch. 4.7 - In each of Problems 14 through 21, find the...Ch. 4.7 - In each of Problems 14 through 21, find the...Ch. 4.7 - In each of Problems 14 through 21, find the...Ch. 4.7 - In each of Problems 14 through 21, find the...Ch. 4.7 - In each of Problems 14 through 21, find the...Ch. 4.7 - In each of Problems 14 through 21, find the...Ch. 4.7 - In each of Problems 22 through 27, verify that the...Ch. 4.7 - In each of Problems 22 through 27, verify that the...Ch. 4.7 - In each of Problems 22 through 27, verify that the...Ch. 4.7 - In each of Problems 22 through 27, verify that the...Ch. 4.7 - In each of Problems 22 through 27, verify that the...Ch. 4.7 - In each of Problems 22 through 27, verify that the...Ch. 4.7 - In each of Problems 28 through 31, find the...Ch. 4.7 - In each of Problems 28 through 31, find the...Ch. 4.7 - In each of Problems 28 through 31, find the...Ch. 4.7 - In each of Problems 28 through 31, find the...Ch. 4.7 - Show that the solution of the initial value...Ch. 4.7 - By choosing the lower limit of integration in Eq....Ch. 4.7 - (a) Use the result of Problem 33 to show that...Ch. 4.7 - Use the result of Problem 33 to find the solution...Ch. 4.7 - Use the result of Problem 33 to find the...Ch. 4.7 - Use the result of Problem 33 to find the solution...Ch. 4.7 - By combining the results of the problems 35...Ch. 4.7 - The method of reduction of order (see the...Ch. 4.7 - In each of problems 40 and 41, use the method...Ch. 4.7 - In each of problems and , use the method outlined...Ch. 4.P1 - Denote by the displacement of the platform from...Ch. 4.P1 - Denote by the frequency response of , that is,...Ch. 4.P1 - Plot the graphs of versus the dimensionless ratio...Ch. 4.P1 - The vibrations in the floor of an industrial plant...Ch. 4.P1 - Test the results of your design strategy for the...Ch. 4.P2 - Show that the differential equation describing the...Ch. 4.P2 - (a) Find the linearization of at .
(b) In the...Ch. 4.P2 - Subject to the initial conditions , draw the graph...Ch. 4.P3 - Assuming that both springs have spring constant ...Ch. 4.P3 - The Heaviside, or unit step function, is defined...Ch. 4.P3 - Is the differential equation derived in Problems ...Ch. 4.P3 - In the case that the damping constant 0, find the...Ch. 4.P3 - Consider the case of an undamped problem using...Ch. 4.P3 - Consider the damped problem using the parameter...Ch. 4.P3 - Describe some other physical problems that could...Ch. 4.P4 - Problems 1 through 3 are concerned with one...Ch. 4.P4 - Problems 1 through 3 are concerned with one...Ch. 4.P4 - Problems 1 through 3 are concerned with one...Ch. 4.P4 - Problems and are concerned with systems that...Ch. 4.P4 - Problems and are concerned with systems that...Ch. 4.P4 - Carry out the calculations that lead from Eq. to...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Distance between the two points
Pre-Algebra Student Edition
Classifying Types of Probability In Exercises 53–58, classify the statement as an example of classical probabil...
Elementary Statistics: Picturing the World (7th Edition)
3. Voluntary Response Sample What is a voluntary response sample, and why is such a sample generally not suitab...
Elementary Statistics
For a population containing N=902 individual, what code number would you assign for a. the first person on the ...
Basic Business Statistics, Student Value Edition
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- r nt Use the compound interest formula, A (t) = P(1 + 1)". An account is opened with an intial deposit of $7,500 and earns 3.8% interest compounded semi- annually. Round all answers to the nearest dollar. a. What will the account be worth in 10 years? $ b. What if the interest were compounding monthly? $ c. What if the interest were compounded daily (assume 365 days in a year)? $arrow_forwardKyoko has $10,000 that she wants to invest. Her bank has several accounts to choose from. Her goal is to have $15,000 by the time she finishes graduate school in 7 years. To the nearest hundredth of a percent, what should her minimum annual interest rate be in order to reach her goal assuming they compound daily? (Hint: solve the compound interest formula for the intrerest rate. Also, assume there are 365 days in a year) %arrow_forwardTest the claim that a student's pulse rate is different when taking a quiz than attending a regular class. The mean pulse rate difference is 2.7 with 10 students. Use a significance level of 0.005. Pulse rate difference(Quiz - Lecture) 2 -1 5 -8 1 20 15 -4 9 -12arrow_forward
- There are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three investment? STEP 1: The formula for compound interest is A = nt = P(1 + − − ) n², where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to A = Pert Find r and n for each model, and use these values to write A in terms of t for each case. Annual Model r=0.10 A = Y(t) = 1150 (1.10)* n = 1 Quarterly Model r = 0.10 n = 4 A = Q(t) = 1150(1.025) 4t Continuous Model r=0.10 A = C(t) =…arrow_forwardThe following ordered data list shows the data speeds for cell phones used by a telephone company at an airport: A. Calculate the Measures of Central Tendency from the ungrouped data list. B. Group the data in an appropriate frequency table. C. Calculate the Measures of Central Tendency using the table in point B. D. Are there differences in the measurements obtained in A and C? Why (give at least one justified reason)? I leave the answers to A and B to resolve the remaining two. 0.8 1.4 1.8 1.9 3.2 3.6 4.5 4.5 4.6 6.2 6.5 7.7 7.9 9.9 10.2 10.3 10.9 11.1 11.1 11.6 11.8 12.0 13.1 13.5 13.7 14.1 14.2 14.7 15.0 15.1 15.5 15.8 16.0 17.5 18.2 20.2 21.1 21.5 22.2 22.4 23.1 24.5 25.7 28.5 34.6 38.5 43.0 55.6 71.3 77.8 A. Measures of Central Tendency We are to calculate: Mean, Median, Mode The data (already ordered) is: 0.8, 1.4, 1.8, 1.9, 3.2, 3.6, 4.5, 4.5, 4.6, 6.2, 6.5, 7.7, 7.9, 9.9, 10.2, 10.3, 10.9, 11.1, 11.1, 11.6, 11.8, 12.0, 13.1, 13.5, 13.7, 14.1, 14.2, 14.7, 15.0, 15.1, 15.5,…arrow_forwardA tournament is a complete directed graph, for each pair of vertices x, y either (x, y) is an arc or (y, x) is an arc. One can think of this as a round robin tournament, where the vertices represent teams, each pair plays exactly once, with the direction of the arc indicating which team wins. (a) Prove that every tournament has a direct Hamiltonian path. That is a labeling of the teams V1, V2,..., Un so that vi beats Vi+1. That is a labeling so that team 1 beats team 2, team 2 beats team 3, etc. (b) A digraph is strongly connected if there is a directed path from any vertex to any other vertex. Equivalently, there is no partition of the teams into groups A, B so that every team in A beats every team in B. Prove that every strongly connected tournament has a directed Hamiltonian cycle. Use this to show that for any team there is an ordering as in part (a) for which the given team is first. (c) A king in a tournament is a vertex such that there is a direct path of length at most 2 to any…arrow_forward
- Use a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.) y = 100e0.01x (x, y) = y = 11,250 ×arrow_forwardhow to construct the following same table?arrow_forwardThe following is known. The complete graph K2t on an even number of vertices has a 1- factorization (equivalently, its edges can be colored with 2t - 1 colors so that the edges incident to each vertex are distinct). This implies that the complete graph K2t+1 on an odd number of vertices has a factorization into copies of tK2 + K₁ (a matching plus an isolated vertex). A group of 10 people wants to set up a 45 week tennis schedule playing doubles, each week, the players will form 5 pairs. One of the pairs will not play, the other 4 pairs will each play one doubles match, two of the pairs playing each other and the other two pairs playing each other. Set up a schedule with the following constraints: Each pair of players is a doubles team exactly 4 times; during those 4 matches they see each other player exactly once; no two doubles teams play each other more than once. (a) Find a schedule. Hint - think about breaking the 45 weeks into 9 blocks of 5 weeks. Use factorizations of complete…arrow_forward
- . The two person game of slither is played on a graph. Players 1 and 2 take turns, building a path in the graph. To start, Player 1 picks a vertex. Player 2 then picks an edge incident to the vertex. Then, starting with Player 1, players alternate turns, picking a vertex not already selected that is adjacent to one of the ends of the path created so far. The first player who cannot select a vertex loses. (This happens when all neighbors of the end vertices of the path are on the path.) Prove that Player 2 has a winning strategy if the graph has a perfect matching and Player 1 has a winning strategy if the graph does not have a perfect matching. In each case describe a strategy for the winning player that guarantees that they will always be able to select a vertex. The strategy will be based on using a maximum matching to decide the next choice, and will, for one of the cases involve using the fact that maximality means no augmenting paths. Warning, the game slither is often described…arrow_forwardLet D be a directed graph, with loops allowed, for which the indegree at each vertex is at most k and the outdegree at each vertex is at most k. Prove that the arcs of D can be colored so that the arcs entering each vertex must have distinct colors and the arcs leaving each vertex have distinct colors. An arc entering a vertex may have the same color as an arc leaving it. It is probably easiest to make use of a known result about edge coloring. Think about splitting each vertex into an ‘in’ and ‘out’ part and consider what type of graph you get.arrow_forward3:56 wust.instructure.com Page 0 Chapter 5 Test Form A of 2 - ZOOM + | Find any real numbers for which each expression is undefined. 2x 4 1. x Name: Date: 1. 3.x-5 2. 2. x²+x-12 4x-24 3. Evaluate when x=-3. 3. x Simplify each rational expression. x²-3x 4. 2x-6 5. x²+3x-18 x²-9 6. Write an equivalent rational expression with the given denominator. 2x-3 x²+2x+1(x+1)(x+2) Perform the indicated operation and simplify if possible. x²-16 x-3 7. 3x-9 x²+2x-8 x²+9x+20 5x+25 8. 4.x 2x² 9. x-5 x-5 3 5 10. 4x-3 8x-6 2 3 11. x-4 x+4 x 12. x-2x-8 x²-4 ← -> Copyright ©2020 Pearson Education, Inc. + 5 4. 5. 6. 7. 8. 9. 10. 11. 12. T-97arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,

Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
Vector Spaces | Definition & Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=72GtkP6nP_A;License: Standard YouTube License, CC-BY
Understanding Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=EP2ghkO0lSk;License: Standard YouTube License, CC-BY