Mathematical Statistics with Applications
7th Edition
ISBN: 9780495110811
Author: Dennis Wackerly, William Mendenhall, Richard L. Scheaffer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.10, Problem 152E
Refer to Exercise 4.109. Find an interval that will contain L for at least 89% of the weeks that the machine is in use.
4.109 The weekly amount of downtime Y (in hours) for an industrial machine has approximately a gamma distribution with α = 3 and β = 2. The loss L (in dollars) to the industrial operation as a result of this downtime is given by L = 30Y + 2Y2. Find the
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 4 Solutions
Mathematical Statistics with Applications
Ch. 4.2 - Prob. 1ECh. 4.2 - A box contains five keys, only one of which will...Ch. 4.2 - A Bernoulli random variable is one that assumes...Ch. 4.2 - Let Y be a binomial random variable with n = 1 and...Ch. 4.2 - Suppose that Y is a random variable that takes on...Ch. 4.2 - Consider a random variable with a geometric...Ch. 4.2 - Let Y be a binomial random variable with n=10 and...Ch. 4.2 - Prob. 8ECh. 4.2 - A random variable Y has the following distribution...Ch. 4.2 - Refer to the density function given in Exercise...
Ch. 4.2 - Suppose that Y possesses the density function...Ch. 4.2 - Prob. 12ECh. 4.2 - A supplier of kerosene has a 150-gallon tank that...Ch. 4.2 - A gas station operates two pumps, each of which...Ch. 4.2 - As a measure of intelligence, mice are timed when...Ch. 4.2 - Let Y possess a density function...Ch. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Prob. 19ECh. 4.3 - Prob. 20ECh. 4.3 - If, as in Exercise 4.17, Y has density function...Ch. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 - If Y is a continuous random variable with density...Ch. 4.3 - Prob. 25ECh. 4.3 - If Y is a continuous random variable with mean ...Ch. 4.3 - Prob. 27ECh. 4.3 - Prob. 28ECh. 4.3 - Prob. 29ECh. 4.3 - The proportion of time Y that an industrial robot...Ch. 4.3 - Prob. 31ECh. 4.3 - Weekly CPU time used by an accounting firm has...Ch. 4.3 - The pH of water samples from a specific lake is a...Ch. 4.3 - Prob. 34ECh. 4.3 - If Y is a continuous random variable such that...Ch. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.4 - Suppose that Y has a uniform distribution over the...Ch. 4.4 - If a parachutist lands at a random point on a line...Ch. 4.4 - Suppose that three parachutists operate...Ch. 4.4 - Prob. 41ECh. 4.4 - Prob. 42ECh. 4.4 - A circle of radius r has area A = r2. If a random...Ch. 4.4 - Prob. 44ECh. 4.4 - Upon studying low bids for shipping contracts, a...Ch. 4.4 - 4.45 Upon studying low bids for shipping...Ch. 4.4 - The failure of a circuit board interrupts work...Ch. 4.4 - If a point is randomly located in an interval (a,...Ch. 4.4 - Prob. 49ECh. 4.4 - Prob. 50ECh. 4.4 - The cycle time for trucks hauling concrete to a...Ch. 4.4 - Refer to Exercise 4.51. Find the mean and variance...Ch. 4.4 - Prob. 53ECh. 4.4 - Prob. 54ECh. 4.4 - Refer to Exercise 4.54. Suppose that measurement...Ch. 4.4 - Refer to Example 4.7. Find the conditional...Ch. 4.4 - Prob. 57ECh. 4.5 - Use Table 4, Appendix 3, to find the following...Ch. 4.5 - Prob. 59ECh. 4.5 - Prob. 60ECh. 4.5 - What is the median of a normally distributed...Ch. 4.5 - If Z is a standard normal random variable, what is...Ch. 4.5 - A company that manufactures and bottles apple...Ch. 4.5 - The weekly amount of money spent on maintenance...Ch. 4.5 - In Exercise 4.64, how much should be budgeted for...Ch. 4.5 - A machining operation produces bearings with...Ch. 4.5 - Prob. 67ECh. 4.5 - Prob. 68ECh. 4.5 - Refer to Exercise 4.68. If students possessing a...Ch. 4.5 - Refer to Exercise 4.68. Suppose that three...Ch. 4.5 - Wires manufactured for use in a computer system...Ch. 4.5 - Prob. 72ECh. 4.5 - The width of bolts of fabric is normally...Ch. 4.5 - A soft-drink machine can be regulated so that it...Ch. 4.5 - The machine described in Exercise 4.75 has...Ch. 4.5 - The SAT and ACT college entrance exams are taken...Ch. 4.5 - Show that the maximum value of the normal density...Ch. 4.5 - Show that the normal density with parameters and ...Ch. 4.5 - Assume that Y is normally distributed with mean ...Ch. 4.6 - a If 0, () is defined by ()=0y1eydy, show that...Ch. 4.6 - Use the results obtained in Exercise 4.81 to prove...Ch. 4.6 - The magnitude of earthquakes recorded in a region...Ch. 4.6 - If Y has an exponential distribution and P(Y 2) =...Ch. 4.6 - Refer to Exercise 4.88. Of the next ten...Ch. 4.6 - The operator of a pumping station has observed...Ch. 4.6 - The length of time Y necessary to complete a key...Ch. 4.6 - Historical evidence indicates that times between...Ch. 4.6 - One-hour carbon monoxide concentrations in air...Ch. 4.6 - Prob. 95ECh. 4.6 - Prob. 96ECh. 4.6 - Prob. 97ECh. 4.6 - Consider the plant of Exercise 4.97. How much of...Ch. 4.6 - If 0 and is a positive integer, the...Ch. 4.6 - Prob. 100ECh. 4.6 - Applet Exercise Refer to Exercise 4.88. Suppose...Ch. 4.6 - Prob. 102ECh. 4.6 - Explosive devices used in mining operations...Ch. 4.6 - The lifetime (in hours) Y of an electronic...Ch. 4.6 - Four-week summer rainfall totals in a section of...Ch. 4.6 - The response times on an online computer terminal...Ch. 4.6 - Refer to Exercise 4.106. a. Use Tchebysheffs...Ch. 4.6 - The weekly amount of downtime Y (in hours) for an...Ch. 4.6 - If Y has a probability density function given by...Ch. 4.6 - Suppose that Y has a gamma distribution with...Ch. 4.6 - Prob. 112ECh. 4.7 - Prob. 120ECh. 4.7 - Prob. 122ECh. 4.7 - The relative humidity Y, when measured at a...Ch. 4.7 - The percentage of impurities per batch in a...Ch. 4.7 - Prob. 125ECh. 4.7 - Suppose that a random variable Y has a probability...Ch. 4.7 - Verify that if Y has a beta distribution with = ...Ch. 4.7 - Prob. 128ECh. 4.7 - During an eight-hour shift, the proportion of time...Ch. 4.7 - Prob. 130ECh. 4.7 - Errors in measuring the time of arrival of a wave...Ch. 4.7 - Prob. 132ECh. 4.7 - Prob. 133ECh. 4.7 - Prob. 134ECh. 4.7 - Prob. 135ECh. 4.9 - Suppose that the waiting time for the first...Ch. 4.9 - Prob. 137ECh. 4.9 - Example 4.16 derives the moment-generating...Ch. 4.9 - The moment-generating function of a normally...Ch. 4.9 - Identify the distributions of the random variables...Ch. 4.9 - If 1 2, derive the moment-generating function of...Ch. 4.9 - Refer to Exercises 4.141 and 4.137. Suppose that Y...Ch. 4.9 - The moment-generating function for the gamma...Ch. 4.9 - Consider a random variable Y with density function...Ch. 4.9 - A random variable Y has the density function...Ch. 4.10 - A manufacturer of tires wants to advertise a...Ch. 4.10 - A machine used to fill cereal boxes dispenses, on...Ch. 4.10 - Find P(|Y | 2) for Exercise 4.16. Compare with...Ch. 4.10 - Find P(|Y | 2) for the uniform random variable....Ch. 4.10 - Prob. 150ECh. 4.10 - Prob. 151ECh. 4.10 - Refer to Exercise 4.109. Find an interval that...Ch. 4.10 - Refer to Exercise 4.129. Find an interval for...Ch. 4.11 - A builder of houses needs to order some supplies...Ch. 4.11 - Prob. 157ECh. 4.11 - Consider the nail-firing device of Example 4.15....Ch. 4.11 - Prob. 159ECh. 4 - Prob. 160SECh. 4 - Prob. 161SECh. 4 - Prob. 162SECh. 4 - Prob. 163SECh. 4 - The length of life of oil-drilling bits depends...Ch. 4 - Prob. 165SECh. 4 - Prob. 166SECh. 4 - Prob. 167SECh. 4 - Prob. 168SECh. 4 - An argument similar to that of Exercise 4.168 can...Ch. 4 - Prob. 170SECh. 4 - Suppose that customers arrive at a checkout...Ch. 4 - Prob. 172SECh. 4 - Prob. 173SECh. 4 - Prob. 174SECh. 4 - Prob. 175SECh. 4 - If Y has an exponential distribution with mean ,...Ch. 4 - Prob. 180SECh. 4 - Prob. 181SECh. 4 - Prob. 182SECh. 4 - Prob. 183SECh. 4 - Prob. 184SECh. 4 - Prob. 185SECh. 4 - Prob. 186SECh. 4 - Refer to Exercise 4.186. Resistors used in the...Ch. 4 - Prob. 188SECh. 4 - Prob. 189SECh. 4 - Prob. 190SECh. 4 - Prob. 191SECh. 4 - The velocities of gas particles can be modeled by...Ch. 4 - Because P(YyYc)=F(y)F(c)1F(c) has the properties...Ch. 4 - Prob. 194SECh. 4 - Prob. 195SECh. 4 - Prob. 196SECh. 4 - Prob. 197SECh. 4 - Prob. 198SECh. 4 - Prob. 199SECh. 4 - Prob. 200SE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- What does the y -intercept on the graph of a logistic equation correspond to for a population modeled by that equation?arrow_forwardTable 6 shows the population, in thousands, of harbor seals in the Wadden Sea over the years 1997 to 2012. a. Let x represent time in years starting with x=0 for the year 1997. Let y represent the number of seals in thousands. Use logistic regression to fit a model to these data. b. Use the model to predict the seal population for the year 2020. c. To the nearest whole number, what is the limiting value of this model?arrow_forwardOlympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forward
- Planetary Velocity The following table gives the mean velocity of planets in their orbits versus their mean distance from the sun. Note that 1AU astronomical unit is the mean distance from Earth to the sun, abut 93 million miles. Planet d=distance AU v=velocity km/sec Mercury 0.39 47.4 Venus 0.72 35.0 Earth 1.00 29.8 Mars 1.52 24.1 Jupiter 5.20 13.1 Saturn 9.58 9.7 Uranus 19.20 6.8 Neptune 30.05 5.4 Astronomers tell us that it is reasonable to model these data with a power function. a Use power regression to express velocity as a power function of distance from the sun. b Plot the data along with the regression equation. c An asteroid orbits at a mean distance of 3AU from the sun. According to the power model you found in part a, what is the mean orbital velocity of the asteroid?arrow_forwardFind the mean hourly cost when the cell phone described above is used for 240 minutes.arrow_forwardCable TV The following table shows the number C. in millions, of basic subscribers to cable TV in the indicated year These data are from the Statistical Abstract of the United States. Year 1975 1980 1985 1990 1995 2000 C 9.8 17.5 35.4 50.5 60.6 60.6 a. Use regression to find a logistic model for these data. b. By what annual percentage would you expect the number of cable subscribers to grow in the absence of limiting factors? c. The estimated number of subscribers in 2005 was 65.3million. What light does this shed on the model you found in part a?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License