The annual aggregate claim amount of an insurer follows a compound Poisson distribution with parameter 1,000. Individual claim amounts follow a Gamma distribution with shape parameter a = 750 and rate parameter λ = 0.25. 1. Generate 20,000 simulated aggregate claim values for the insurer, using a random number generator seed of 955.Display the first five simulated claim values in your answer script using the R function head(). 2. Plot the empirical density function of the simulated aggregate claim values from Question 1, setting the x-axis range from 2,600,000 to 3,300,000 and the y-axis range from 0 to 0.0000045. 3. Suggest a suitable distribution, including its parameters, that approximates the simulated aggregate claim values from Question 1. 4. Generate 20,000 values from your suggested distribution in Question 3 using a random number generator seed of 955. Use the R function head() to display the first five generated values in your answer script. 5. Plot the empirical density function of the simulated values in Question 4 as a different coloured line in the chart that was produced in Question 2.|

Glencoe Algebra 1, Student Edition, 9780079039897, 0079039898, 2018
18th Edition
ISBN:9780079039897
Author:Carter
Publisher:Carter
Chapter10: Statistics
Section10.6: Summarizing Categorical Data
Problem 31PPS
icon
Related questions
Question
100%
The annual aggregate claim amount of an insurer follows a compound Poisson distribution with
parameter 1,000. Individual claim amounts follow a Gamma distribution with shape parameter
a = 750 and rate parameter λ = 0.25.
1. Generate 20,000 simulated aggregate claim values for the insurer, using a random
number generator seed of 955.Display the first five simulated claim values in your
answer script using the R function head().
2. Plot the empirical density function of the simulated aggregate claim values from
Question 1, setting the x-axis range from 2,600,000 to 3,300,000 and the y-axis range
from 0 to 0.0000045.
3. Suggest a suitable distribution, including its parameters, that approximates the
simulated aggregate claim values from Question 1.
4. Generate 20,000 values from your suggested distribution in Question 3 using a random
number generator seed of 955. Use the R function head() to display the first five
generated values in your answer script.
5. Plot the empirical density function of the simulated values in Question 4 as a different
coloured line in the chart that was produced in Question 2.|
Transcribed Image Text:The annual aggregate claim amount of an insurer follows a compound Poisson distribution with parameter 1,000. Individual claim amounts follow a Gamma distribution with shape parameter a = 750 and rate parameter λ = 0.25. 1. Generate 20,000 simulated aggregate claim values for the insurer, using a random number generator seed of 955.Display the first five simulated claim values in your answer script using the R function head(). 2. Plot the empirical density function of the simulated aggregate claim values from Question 1, setting the x-axis range from 2,600,000 to 3,300,000 and the y-axis range from 0 to 0.0000045. 3. Suggest a suitable distribution, including its parameters, that approximates the simulated aggregate claim values from Question 1. 4. Generate 20,000 values from your suggested distribution in Question 3 using a random number generator seed of 955. Use the R function head() to display the first five generated values in your answer script. 5. Plot the empirical density function of the simulated values in Question 4 as a different coloured line in the chart that was produced in Question 2.|
Expert Solution
steps

Step by step

Solved in 2 steps with 5 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Glencoe Algebra 1, Student Edition, 9780079039897…
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill