Mathematical Statistics with Applications
7th Edition
ISBN: 9780495110811
Author: Dennis Wackerly, William Mendenhall, Richard L. Scheaffer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.11, Problem 155E
A builder of houses needs to order some supplies that have a waiting time Y for delivery, with a continuous uniform distribution over the interval from 1 to 4 days. Because she can get by without them for 2 days, the cost of the delay is fixed at $100 for any waiting time up to 2 days. After 2 days, however, the cost of the delay is $100 plus $20 per day (prorated) for each additional day. That is, if the waiting time is 3.5 days, the cost of the delay is $100 + $20(1.5) = $130. Find the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A certain faculty printer is shared by staff and students. Suppose that the rate of generating requests to the printer by staff is twice that of students, but that the average time to print a student printout is the same as average time for a faculty printout. If the utilization of the printer by the students is 25%, the utilization of the printer by the faculty is 50%, the overall average service time is 1 minute, what is the average time the students spend waiting for their printout (time spend in system)?
At the beginning of the year a company estimated that 20.000 direct labor hours would be required for the period's estimated level of production. The company also estimated $140 000 of fixed manufacturing
overhead cost for the coming period and variable manufacturing overhead of $150 per direct laber-hour
Asume that Job X used $200 in direct materials, $280 of drect labor, and 20 direct labor hours. What is the total job cost for Job X"
O
O
540000
$60.00
SYMUD
Price scanners at the checkout register sometimes make mistakes, charging either more or less than the labeled price. Suppose that a scanner is wrong 4% of the time, with half of the errors in favor of the store and half
in favor of the customer. Assume that an error in favor of the store means that the scanned price is 5% above the listed price and an error in favor of the customer means that the scanned price is 5% below the listed
price. How would these errors affect the distribution of the prices of sold items?
The pricing errors will result in
V mean price and
V in variation.
Chapter 4 Solutions
Mathematical Statistics with Applications
Ch. 4.2 - Prob. 1ECh. 4.2 - A box contains five keys, only one of which will...Ch. 4.2 - A Bernoulli random variable is one that assumes...Ch. 4.2 - Let Y be a binomial random variable with n = 1 and...Ch. 4.2 - Suppose that Y is a random variable that takes on...Ch. 4.2 - Consider a random variable with a geometric...Ch. 4.2 - Let Y be a binomial random variable with n=10 and...Ch. 4.2 - Prob. 8ECh. 4.2 - A random variable Y has the following distribution...Ch. 4.2 - Refer to the density function given in Exercise...
Ch. 4.2 - Suppose that Y possesses the density function...Ch. 4.2 - Prob. 12ECh. 4.2 - A supplier of kerosene has a 150-gallon tank that...Ch. 4.2 - A gas station operates two pumps, each of which...Ch. 4.2 - As a measure of intelligence, mice are timed when...Ch. 4.2 - Let Y possess a density function...Ch. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Prob. 19ECh. 4.3 - Prob. 20ECh. 4.3 - If, as in Exercise 4.17, Y has density function...Ch. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 - If Y is a continuous random variable with density...Ch. 4.3 - Prob. 25ECh. 4.3 - If Y is a continuous random variable with mean ...Ch. 4.3 - Prob. 27ECh. 4.3 - Prob. 28ECh. 4.3 - Prob. 29ECh. 4.3 - The proportion of time Y that an industrial robot...Ch. 4.3 - Prob. 31ECh. 4.3 - Weekly CPU time used by an accounting firm has...Ch. 4.3 - The pH of water samples from a specific lake is a...Ch. 4.3 - Prob. 34ECh. 4.3 - If Y is a continuous random variable such that...Ch. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.4 - Suppose that Y has a uniform distribution over the...Ch. 4.4 - If a parachutist lands at a random point on a line...Ch. 4.4 - Suppose that three parachutists operate...Ch. 4.4 - Prob. 41ECh. 4.4 - Prob. 42ECh. 4.4 - A circle of radius r has area A = r2. If a random...Ch. 4.4 - Prob. 44ECh. 4.4 - Upon studying low bids for shipping contracts, a...Ch. 4.4 - 4.45 Upon studying low bids for shipping...Ch. 4.4 - The failure of a circuit board interrupts work...Ch. 4.4 - If a point is randomly located in an interval (a,...Ch. 4.4 - Prob. 49ECh. 4.4 - Prob. 50ECh. 4.4 - The cycle time for trucks hauling concrete to a...Ch. 4.4 - Refer to Exercise 4.51. Find the mean and variance...Ch. 4.4 - Prob. 53ECh. 4.4 - Prob. 54ECh. 4.4 - Refer to Exercise 4.54. Suppose that measurement...Ch. 4.4 - Refer to Example 4.7. Find the conditional...Ch. 4.4 - Prob. 57ECh. 4.5 - Use Table 4, Appendix 3, to find the following...Ch. 4.5 - Prob. 59ECh. 4.5 - Prob. 60ECh. 4.5 - What is the median of a normally distributed...Ch. 4.5 - If Z is a standard normal random variable, what is...Ch. 4.5 - A company that manufactures and bottles apple...Ch. 4.5 - The weekly amount of money spent on maintenance...Ch. 4.5 - In Exercise 4.64, how much should be budgeted for...Ch. 4.5 - A machining operation produces bearings with...Ch. 4.5 - Prob. 67ECh. 4.5 - Prob. 68ECh. 4.5 - Refer to Exercise 4.68. If students possessing a...Ch. 4.5 - Refer to Exercise 4.68. Suppose that three...Ch. 4.5 - Wires manufactured for use in a computer system...Ch. 4.5 - Prob. 72ECh. 4.5 - The width of bolts of fabric is normally...Ch. 4.5 - A soft-drink machine can be regulated so that it...Ch. 4.5 - The machine described in Exercise 4.75 has...Ch. 4.5 - The SAT and ACT college entrance exams are taken...Ch. 4.5 - Show that the maximum value of the normal density...Ch. 4.5 - Show that the normal density with parameters and ...Ch. 4.5 - Assume that Y is normally distributed with mean ...Ch. 4.6 - a If 0, () is defined by ()=0y1eydy, show that...Ch. 4.6 - Use the results obtained in Exercise 4.81 to prove...Ch. 4.6 - The magnitude of earthquakes recorded in a region...Ch. 4.6 - If Y has an exponential distribution and P(Y 2) =...Ch. 4.6 - Refer to Exercise 4.88. Of the next ten...Ch. 4.6 - The operator of a pumping station has observed...Ch. 4.6 - The length of time Y necessary to complete a key...Ch. 4.6 - Historical evidence indicates that times between...Ch. 4.6 - One-hour carbon monoxide concentrations in air...Ch. 4.6 - Prob. 95ECh. 4.6 - Prob. 96ECh. 4.6 - Prob. 97ECh. 4.6 - Consider the plant of Exercise 4.97. How much of...Ch. 4.6 - If 0 and is a positive integer, the...Ch. 4.6 - Prob. 100ECh. 4.6 - Applet Exercise Refer to Exercise 4.88. Suppose...Ch. 4.6 - Prob. 102ECh. 4.6 - Explosive devices used in mining operations...Ch. 4.6 - The lifetime (in hours) Y of an electronic...Ch. 4.6 - Four-week summer rainfall totals in a section of...Ch. 4.6 - The response times on an online computer terminal...Ch. 4.6 - Refer to Exercise 4.106. a. Use Tchebysheffs...Ch. 4.6 - The weekly amount of downtime Y (in hours) for an...Ch. 4.6 - If Y has a probability density function given by...Ch. 4.6 - Suppose that Y has a gamma distribution with...Ch. 4.6 - Prob. 112ECh. 4.7 - Prob. 120ECh. 4.7 - Prob. 122ECh. 4.7 - The relative humidity Y, when measured at a...Ch. 4.7 - The percentage of impurities per batch in a...Ch. 4.7 - Prob. 125ECh. 4.7 - Suppose that a random variable Y has a probability...Ch. 4.7 - Verify that if Y has a beta distribution with = ...Ch. 4.7 - Prob. 128ECh. 4.7 - During an eight-hour shift, the proportion of time...Ch. 4.7 - Prob. 130ECh. 4.7 - Errors in measuring the time of arrival of a wave...Ch. 4.7 - Prob. 132ECh. 4.7 - Prob. 133ECh. 4.7 - Prob. 134ECh. 4.7 - Prob. 135ECh. 4.9 - Suppose that the waiting time for the first...Ch. 4.9 - Prob. 137ECh. 4.9 - Example 4.16 derives the moment-generating...Ch. 4.9 - The moment-generating function of a normally...Ch. 4.9 - Identify the distributions of the random variables...Ch. 4.9 - If 1 2, derive the moment-generating function of...Ch. 4.9 - Refer to Exercises 4.141 and 4.137. Suppose that Y...Ch. 4.9 - The moment-generating function for the gamma...Ch. 4.9 - Consider a random variable Y with density function...Ch. 4.9 - A random variable Y has the density function...Ch. 4.10 - A manufacturer of tires wants to advertise a...Ch. 4.10 - A machine used to fill cereal boxes dispenses, on...Ch. 4.10 - Find P(|Y | 2) for Exercise 4.16. Compare with...Ch. 4.10 - Find P(|Y | 2) for the uniform random variable....Ch. 4.10 - Prob. 150ECh. 4.10 - Prob. 151ECh. 4.10 - Refer to Exercise 4.109. Find an interval that...Ch. 4.10 - Refer to Exercise 4.129. Find an interval for...Ch. 4.11 - A builder of houses needs to order some supplies...Ch. 4.11 - Prob. 157ECh. 4.11 - Consider the nail-firing device of Example 4.15....Ch. 4.11 - Prob. 159ECh. 4 - Prob. 160SECh. 4 - Prob. 161SECh. 4 - Prob. 162SECh. 4 - Prob. 163SECh. 4 - The length of life of oil-drilling bits depends...Ch. 4 - Prob. 165SECh. 4 - Prob. 166SECh. 4 - Prob. 167SECh. 4 - Prob. 168SECh. 4 - An argument similar to that of Exercise 4.168 can...Ch. 4 - Prob. 170SECh. 4 - Suppose that customers arrive at a checkout...Ch. 4 - Prob. 172SECh. 4 - Prob. 173SECh. 4 - Prob. 174SECh. 4 - Prob. 175SECh. 4 - If Y has an exponential distribution with mean ,...Ch. 4 - Prob. 180SECh. 4 - Prob. 181SECh. 4 - Prob. 182SECh. 4 - Prob. 183SECh. 4 - Prob. 184SECh. 4 - Prob. 185SECh. 4 - Prob. 186SECh. 4 - Refer to Exercise 4.186. Resistors used in the...Ch. 4 - Prob. 188SECh. 4 - Prob. 189SECh. 4 - Prob. 190SECh. 4 - Prob. 191SECh. 4 - The velocities of gas particles can be modeled by...Ch. 4 - Because P(YyYc)=F(y)F(c)1F(c) has the properties...Ch. 4 - Prob. 194SECh. 4 - Prob. 195SECh. 4 - Prob. 196SECh. 4 - Prob. 197SECh. 4 - Prob. 198SECh. 4 - Prob. 199SECh. 4 - Prob. 200SE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- If during the following year it is predicted that each comedy skit will generate 30 thousand and each musical number 20 thousand, find the maximum income for the year. A television program director must schedule comedy skits and musical numbers for prime-time variety shows. Each comedy skit requires 2 hours of rehearsal time, costs 3000, and brings in 20,000 from the shows sponsors. Each musical number requires 1 hour of rehearsal time, costs 6000, and generates 12,000. If 250 hours are available for rehearsal and 600,000 is budgeted for comedy and music, how many segments of each type should be produced to maximize income? Find the maximum income.arrow_forwardNewyork University Building 8 has a 15-story structure. Mr. Raju works on the 11th floor of this building. Except for stopping on a floor where the button has been pressed, the single elevator travels endlessly between floors 1,2,3,..., 14,15,14,...,3,2,1. Assume that the amount of time required to load and unload passengers is minimal compared to the actual trip time.Mr. Raju always wonders when he is about to leave his office at 6 PM, most of the time, the lift goes up before stopping at his floor. One day, Raju encounters you in the lift and shared his thoughts with you. Since you are taking Discrete Mathematics course, he expects you to solve the mystery for him. Provide a valid explanation in terms of probability to Mr. Raju.arrow_forwardProducts A and B requires various times for operations on machine M1, M2 and M3. During a certain productionperiod, M1 has 4000 minutes of time available, M2 has 6000 minutes , and M3 has 3000 minutes. Machine timeper unit of A 1 minute on M1, 2 minutes on M2 and no time on M3. Machine time per unit of B is 1 minute oneach of the three machines. Expected profit contributions are TK 60 per unit of A made and TK 75 per unit ofB. If production during the period is limited to products A and B, how many units of each should be made tomaximize the profit.arrow_forward
- The minimum amount of time an item requires to pass through a process from beginning to end (i.e., it never waits for other items) is 124 minutes. Wages average $40 per hour. There are 5 workers in the system and the worker at the slowest station needs 32 minutes to complete his work. What is the direct labor cost ($/item)? Round to 2 decimal places.arrow_forwardConsider the problem of an individual that has Y dollars to spend on consuming over two periods. Let c1 denote the amount of consumption that the individual would like to purchase in period 1 and c2 denote the amount of consumption that the individual would like to consume in period 2. The individual begins period 1 with Y dollars and can purchase c, units of the consumption good at a price P1 and can save any unspent wealth. Use s, to denote the amount of savings the individual chooses to hold at the end of period 1. Any wealth that is saved earns interest at rate r so that the amount of wealth the individual has at his/her disposal to purchase consumption goods in period 2 is (1+r)s1. This principal and interest on savings is used to finance period 2 consumption. Again, for simplicity, we can assume that it costs P, dollars to buy a unit of the consumption good in period 2.arrow_forwardWarren decided to choose the lease option that will minimize his total 36-month cost. The difficulty is that Warren is not sure how many miles he will drive ove the next three years. For purposes of this decision he believes it is reasonable to assume that he will drive 12,000 miles per year, 15,000 miles per year, or 18,000 miles per year. With this assumption Warren estimated his total costs for the three lease options. For example, he figures that the Forno Automotive lease will cost him $10,764 if he drives 12,000 miles per year, $12,114 if he drives 15,000 miles per year, or $13,464 if he drives 18,000 miles per year. a. What is the decision, and what is the chance event? The decision is to choose the best lease option The chance event is the number of miles driven v b. Construct a payoff table. Annual Miles Driven Dealer 12,000 15,000 18,000 Forno Automotive Midtown Motors Hopkins Automotive c. Suppose that the probabilities that Warren drives 12,000, 15,000, and 18,000 miles per…arrow_forward
- A corporate agricultural organization has three separate farms which are to be used during the coming year. Each farm has unique characteristics which make it most suitable for raising one crop only. Table below indicates the crop selected for each farm, the annual cost of planting 1 acre of the crop, the expected revenue to be derived from each acre, and the fixed costs associated with operating each farm. In addition to the fixed costs associated with operating each farm, there are annual fixed costs of $75,000 for the corporation as a whole. Farm Crop Cost/Acre (cj) Revenue/Acre (rj) Fixed Cost (Fj) 1 Soya beans $900 $1,300 $150,000 2 Corn $1,100 $1,650 $175,000 3 Potatoes $750 $1,200 $125,000 Determine the profit function for the three-farm operation. What are the expected profits for the program if the board of directors has voted on the following planting program for the coming year; 1,000 acres will be planted at farm 1,…arrow_forwardWhat is the correct option please?arrow_forwardA farmer has 1,000 acres of land on which he can grow corn, wheat or soya beans. Each acre of corn costs ksh 100 for preparation, requires 7 man – days of work and yields a profit of ksh. 30. An acre of wheat costs ksh 120 to prepare, requires 10 man – days of work and yields a profit of ksh. 40. An acre of soya beans costs ksh 70 to prepare, requires 8 man – days of work and yields a profit of ksh. 20. If the farmer has ksh 100,000 for preparation and can count on 8,000 man – days of work, how many should be allocated to each crop to maximize profits.arrow_forward
- The long run. A chair manufacturer hires its assembly-line labour for $18 an hour and calculates that the rental cost of its machinery is $6 per hour. Suppose that a chair can be produced using 4 hours of labour or machinery in any combination. The firm is currently using 1 hour of labour for every 3 hours of machine time. (Assume that labour is on the horizontal axis and capital is on the vertical axis). 3. Graphically illustrate your answer by drawing an isoquant, an isocost line for the current combination of labour and capital and an isocost line for the optimal combination of labour and capital. An isocost corresponding to the optimal combination of labour and capital is [a vertical line, a horizontal line, an upward sloping straight line, an upward sloping curve which is not a straight line, a downward sloping straight line, a downward sloping curve which is not a straight line, L-shaped] has slope [ ] at the optimal combination of inputs An isoquant…arrow_forwardA car rental company is developing a replacement plan for its car fleet over the next 4 years. Based on past data, they have estimated all costs associated with replacement of individual cars within this planning horizon. All costs such as purchasing, operating, maintenance, and resale, associated with the policy to buy a car in year i and sell it in year j, is denoted as c, and is estimated for the whole planning horizon (in x$1000. All replacements (buying and selling) are assumed to occur at the beginning of the indicated years, and a car must be in service for at least one year before replacement is considered. What is the least cost replacement policy?arrow_forwardSuppose that in the inventory problem, there is an annual cost, k₁, for storing a single unit, plus an annual cost per unit, k2, that must be paid for each unit up to the maximum number of units stored. The number of units that should be ordered or manufactured to minimize the total cost in this case is q = 2fM k1 + 2k2 Every year, Gianna sells 29,760 cases of her Famous Spaghetti Sauce. It costs her $1 per year in electricity to store a case, plus she must pay annual warehouse fees of $2 per case for the maximum . . . production runs each year Gianna should have to minimize her total costs.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License