Mathematical Statistics with Applications
7th Edition
ISBN: 9780495110811
Author: Dennis Wackerly, William Mendenhall, Richard L. Scheaffer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.6, Problem 109E
The weekly amount of downtime Y (in hours) for an industrial machine has approximately a gamma distribution with α = 3 and β = 2. The loss L (in dollars) to the industrial operation as a result of this downtime is given by L = 30Y + 2Y2. Find the
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The following are suggested designs for group sequential studies. Using PROCSEQDESIGN, provide the following for the design O’Brien Fleming and Pocock.• The critical boundary values for each analysis of the data• The expected sample sizes at each interim analysisAssume the standardized Z score method for calculating boundaries.Investigators are evaluating the success rate of a novel drug for treating a certain type ofbacterial wound infection. Since no existing treatment exists, they have planned a one-armstudy. They wish to test whether the success rate of the drug is better than 50%, whichthey have defined as the null success rate. Preliminary testing has estimated the successrate of the drug at 55%. The investigators are eager to get the drug into production andwould like to plan for 9 interim analyses (10 analyzes in total) of the data. Assume thesignificance level is 5% and power is 90%.Besides, draw a combined boundary plot (OBF, POC, and HP)
Please provide the solution for the attached image in detailed.
20 km, because
GISS
Worksheet 10
Jesse runs a small business selling and delivering mealie meal to the spaza shops.
He charges a fixed rate of R80, 00 for delivery and then R15, 50 for each packet of
mealle meal he delivers. The table below helps him to calculate what to charge
his customers.
10
20
30
40
50
Packets of mealie
meal (m)
Total costs in Rands
80
235
390
545
700
855
(c)
10.1.
Define the following terms:
10.1.1. Independent Variables
10.1.2. Dependent Variables
10.2.
10.3.
10.4.
10.5.
Determine the independent and dependent variables.
Are the variables in this scenario discrete or continuous values? Explain
What shape do you expect the graph to be? Why?
Draw a graph on the graph provided to represent the information in the
table above.
TOTAL COST OF PACKETS OF MEALIE MEAL
900
800
700
600
COST (R)
500
400
300
200
100
0
10
20
30
40
60
NUMBER OF PACKETS OF MEALIE MEAL
Chapter 4 Solutions
Mathematical Statistics with Applications
Ch. 4.2 - Prob. 1ECh. 4.2 - A box contains five keys, only one of which will...Ch. 4.2 - A Bernoulli random variable is one that assumes...Ch. 4.2 - Let Y be a binomial random variable with n = 1 and...Ch. 4.2 - Suppose that Y is a random variable that takes on...Ch. 4.2 - Consider a random variable with a geometric...Ch. 4.2 - Let Y be a binomial random variable with n=10 and...Ch. 4.2 - Prob. 8ECh. 4.2 - A random variable Y has the following distribution...Ch. 4.2 - Refer to the density function given in Exercise...
Ch. 4.2 - Suppose that Y possesses the density function...Ch. 4.2 - Prob. 12ECh. 4.2 - A supplier of kerosene has a 150-gallon tank that...Ch. 4.2 - A gas station operates two pumps, each of which...Ch. 4.2 - As a measure of intelligence, mice are timed when...Ch. 4.2 - Let Y possess a density function...Ch. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Prob. 19ECh. 4.3 - Prob. 20ECh. 4.3 - If, as in Exercise 4.17, Y has density function...Ch. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 - If Y is a continuous random variable with density...Ch. 4.3 - Prob. 25ECh. 4.3 - If Y is a continuous random variable with mean ...Ch. 4.3 - Prob. 27ECh. 4.3 - Prob. 28ECh. 4.3 - Prob. 29ECh. 4.3 - The proportion of time Y that an industrial robot...Ch. 4.3 - Prob. 31ECh. 4.3 - Weekly CPU time used by an accounting firm has...Ch. 4.3 - The pH of water samples from a specific lake is a...Ch. 4.3 - Prob. 34ECh. 4.3 - If Y is a continuous random variable such that...Ch. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.4 - Suppose that Y has a uniform distribution over the...Ch. 4.4 - If a parachutist lands at a random point on a line...Ch. 4.4 - Suppose that three parachutists operate...Ch. 4.4 - Prob. 41ECh. 4.4 - Prob. 42ECh. 4.4 - A circle of radius r has area A = r2. If a random...Ch. 4.4 - Prob. 44ECh. 4.4 - Upon studying low bids for shipping contracts, a...Ch. 4.4 - 4.45 Upon studying low bids for shipping...Ch. 4.4 - The failure of a circuit board interrupts work...Ch. 4.4 - If a point is randomly located in an interval (a,...Ch. 4.4 - Prob. 49ECh. 4.4 - Prob. 50ECh. 4.4 - The cycle time for trucks hauling concrete to a...Ch. 4.4 - Refer to Exercise 4.51. Find the mean and variance...Ch. 4.4 - Prob. 53ECh. 4.4 - Prob. 54ECh. 4.4 - Refer to Exercise 4.54. Suppose that measurement...Ch. 4.4 - Refer to Example 4.7. Find the conditional...Ch. 4.4 - Prob. 57ECh. 4.5 - Use Table 4, Appendix 3, to find the following...Ch. 4.5 - Prob. 59ECh. 4.5 - Prob. 60ECh. 4.5 - What is the median of a normally distributed...Ch. 4.5 - If Z is a standard normal random variable, what is...Ch. 4.5 - A company that manufactures and bottles apple...Ch. 4.5 - The weekly amount of money spent on maintenance...Ch. 4.5 - In Exercise 4.64, how much should be budgeted for...Ch. 4.5 - A machining operation produces bearings with...Ch. 4.5 - Prob. 67ECh. 4.5 - Prob. 68ECh. 4.5 - Refer to Exercise 4.68. If students possessing a...Ch. 4.5 - Refer to Exercise 4.68. Suppose that three...Ch. 4.5 - Wires manufactured for use in a computer system...Ch. 4.5 - Prob. 72ECh. 4.5 - The width of bolts of fabric is normally...Ch. 4.5 - A soft-drink machine can be regulated so that it...Ch. 4.5 - The machine described in Exercise 4.75 has...Ch. 4.5 - The SAT and ACT college entrance exams are taken...Ch. 4.5 - Show that the maximum value of the normal density...Ch. 4.5 - Show that the normal density with parameters and ...Ch. 4.5 - Assume that Y is normally distributed with mean ...Ch. 4.6 - a If 0, () is defined by ()=0y1eydy, show that...Ch. 4.6 - Use the results obtained in Exercise 4.81 to prove...Ch. 4.6 - The magnitude of earthquakes recorded in a region...Ch. 4.6 - If Y has an exponential distribution and P(Y 2) =...Ch. 4.6 - Refer to Exercise 4.88. Of the next ten...Ch. 4.6 - The operator of a pumping station has observed...Ch. 4.6 - The length of time Y necessary to complete a key...Ch. 4.6 - Historical evidence indicates that times between...Ch. 4.6 - One-hour carbon monoxide concentrations in air...Ch. 4.6 - Prob. 95ECh. 4.6 - Prob. 96ECh. 4.6 - Prob. 97ECh. 4.6 - Consider the plant of Exercise 4.97. How much of...Ch. 4.6 - If 0 and is a positive integer, the...Ch. 4.6 - Prob. 100ECh. 4.6 - Applet Exercise Refer to Exercise 4.88. Suppose...Ch. 4.6 - Prob. 102ECh. 4.6 - Explosive devices used in mining operations...Ch. 4.6 - The lifetime (in hours) Y of an electronic...Ch. 4.6 - Four-week summer rainfall totals in a section of...Ch. 4.6 - The response times on an online computer terminal...Ch. 4.6 - Refer to Exercise 4.106. a. Use Tchebysheffs...Ch. 4.6 - The weekly amount of downtime Y (in hours) for an...Ch. 4.6 - If Y has a probability density function given by...Ch. 4.6 - Suppose that Y has a gamma distribution with...Ch. 4.6 - Prob. 112ECh. 4.7 - Prob. 120ECh. 4.7 - Prob. 122ECh. 4.7 - The relative humidity Y, when measured at a...Ch. 4.7 - The percentage of impurities per batch in a...Ch. 4.7 - Prob. 125ECh. 4.7 - Suppose that a random variable Y has a probability...Ch. 4.7 - Verify that if Y has a beta distribution with = ...Ch. 4.7 - Prob. 128ECh. 4.7 - During an eight-hour shift, the proportion of time...Ch. 4.7 - Prob. 130ECh. 4.7 - Errors in measuring the time of arrival of a wave...Ch. 4.7 - Prob. 132ECh. 4.7 - Prob. 133ECh. 4.7 - Prob. 134ECh. 4.7 - Prob. 135ECh. 4.9 - Suppose that the waiting time for the first...Ch. 4.9 - Prob. 137ECh. 4.9 - Example 4.16 derives the moment-generating...Ch. 4.9 - The moment-generating function of a normally...Ch. 4.9 - Identify the distributions of the random variables...Ch. 4.9 - If 1 2, derive the moment-generating function of...Ch. 4.9 - Refer to Exercises 4.141 and 4.137. Suppose that Y...Ch. 4.9 - The moment-generating function for the gamma...Ch. 4.9 - Consider a random variable Y with density function...Ch. 4.9 - A random variable Y has the density function...Ch. 4.10 - A manufacturer of tires wants to advertise a...Ch. 4.10 - A machine used to fill cereal boxes dispenses, on...Ch. 4.10 - Find P(|Y | 2) for Exercise 4.16. Compare with...Ch. 4.10 - Find P(|Y | 2) for the uniform random variable....Ch. 4.10 - Prob. 150ECh. 4.10 - Prob. 151ECh. 4.10 - Refer to Exercise 4.109. Find an interval that...Ch. 4.10 - Refer to Exercise 4.129. Find an interval for...Ch. 4.11 - A builder of houses needs to order some supplies...Ch. 4.11 - Prob. 157ECh. 4.11 - Consider the nail-firing device of Example 4.15....Ch. 4.11 - Prob. 159ECh. 4 - Prob. 160SECh. 4 - Prob. 161SECh. 4 - Prob. 162SECh. 4 - Prob. 163SECh. 4 - The length of life of oil-drilling bits depends...Ch. 4 - Prob. 165SECh. 4 - Prob. 166SECh. 4 - Prob. 167SECh. 4 - Prob. 168SECh. 4 - An argument similar to that of Exercise 4.168 can...Ch. 4 - Prob. 170SECh. 4 - Suppose that customers arrive at a checkout...Ch. 4 - Prob. 172SECh. 4 - Prob. 173SECh. 4 - Prob. 174SECh. 4 - Prob. 175SECh. 4 - If Y has an exponential distribution with mean ,...Ch. 4 - Prob. 180SECh. 4 - Prob. 181SECh. 4 - Prob. 182SECh. 4 - Prob. 183SECh. 4 - Prob. 184SECh. 4 - Prob. 185SECh. 4 - Prob. 186SECh. 4 - Refer to Exercise 4.186. Resistors used in the...Ch. 4 - Prob. 188SECh. 4 - Prob. 189SECh. 4 - Prob. 190SECh. 4 - Prob. 191SECh. 4 - The velocities of gas particles can be modeled by...Ch. 4 - Because P(YyYc)=F(y)F(c)1F(c) has the properties...Ch. 4 - Prob. 194SECh. 4 - Prob. 195SECh. 4 - Prob. 196SECh. 4 - Prob. 197SECh. 4 - Prob. 198SECh. 4 - Prob. 199SECh. 4 - Prob. 200SE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Let X be a random variable with support SX = {−3, 0.5, 3, −2.5, 3.5}. Part ofits probability mass function (PMF) is given bypX(−3) = 0.15, pX(−2.5) = 0.3, pX(3) = 0.2, pX(3.5) = 0.15.(a) Find pX(0.5).(b) Find the cumulative distribution function (CDF), FX(x), of X.1(c) Sketch the graph of FX(x).arrow_forwardA well-known company predominantly makes flat pack furniture for students. Variability with the automated machinery means the wood components are cut with a standard deviation in length of 0.45 mm. After they are cut the components are measured. If their length is more than 1.2 mm from the required length, the components are rejected. a) Calculate the percentage of components that get rejected. b) In a manufacturing run of 1000 units, how many are expected to be rejected? c) The company wishes to install more accurate equipment in order to reduce the rejection rate by one-half, using the same ±1.2mm rejection criterion. Calculate the maximum acceptable standard deviation of the new process.arrow_forward5. Let X and Y be independent random variables and let the superscripts denote symmetrization (recall Sect. 3.6). Show that (X + Y) X+ys.arrow_forward
- 8. Suppose that the moments of the random variable X are constant, that is, suppose that EX" =c for all n ≥ 1, for some constant c. Find the distribution of X.arrow_forward9. The concentration function of a random variable X is defined as Qx(h) = sup P(x ≤ X ≤x+h), h>0. Show that, if X and Y are independent random variables, then Qx+y (h) min{Qx(h). Qr (h)).arrow_forward10. Prove that, if (t)=1+0(12) as asf->> O is a characteristic function, then p = 1.arrow_forward
- 9. The concentration function of a random variable X is defined as Qx(h) sup P(x ≤x≤x+h), h>0. (b) Is it true that Qx(ah) =aQx (h)?arrow_forward3. Let X1, X2,..., X, be independent, Exp(1)-distributed random variables, and set V₁₁ = max Xk and W₁ = X₁+x+x+ Isk≤narrow_forward7. Consider the function (t)=(1+|t|)e, ER. (a) Prove that is a characteristic function. (b) Prove that the corresponding distribution is absolutely continuous. (c) Prove, departing from itself, that the distribution has finite mean and variance. (d) Prove, without computation, that the mean equals 0. (e) Compute the density.arrow_forward
- 1. Show, by using characteristic, or moment generating functions, that if fx(x) = ½ex, -∞0 < x < ∞, then XY₁ - Y2, where Y₁ and Y2 are independent, exponentially distributed random variables.arrow_forward1. Show, by using characteristic, or moment generating functions, that if 1 fx(x): x) = ½exarrow_forward1990) 02-02 50% mesob berceus +7 What's the probability of getting more than 1 head on 10 flips of a fair coin?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License