Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 47P
(a)
To determine
The initial activity of iodine isotope
(b)
To determine
The activity of iodine isotope
(c)
To determine
The activity of iodine isotope
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The radioactive cobalt isotope, 60Co, has an half-life of 63 months and undergoes decay. The molar massof 60Co is 59.9338222 amu. A sample initially contains 48 mg of 60Co.(a) Calculate the number of moles of 60Co that are left in the sample after 5.0 years. (4)(b) Calculate the activity of 60Co after 5.0 years, in units of per month (month1).
One of the hazards of nuclear explosions is the generation of 90Sr and its subsequent incorporation in place of calcium in bones. This nucl ide emits β particles of energy 0.55 MeV. and has a half-l ife of 28.1 a. Suppose 1.00 μg was absorbed by a newly born ch ild. How much will remain after(a) 19 a, (b) 75 a if none is lost metabolica lly?
H:39)
Chapter 41 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 41.2 - Prob. 1AECh. 41.2 - Prob. 1BECh. 41.4 - Prob. 1CECh. 41.8 - Prob. 1DECh. 41.8 - Prob. 1EECh. 41.8 - Prob. 1FECh. 41.8 - Prob. 1GECh. 41 - Prob. 1QCh. 41 - Prob. 2QCh. 41 - Prob. 3Q
Ch. 41 - Prob. 4QCh. 41 - Prob. 5QCh. 41 - How do we know there is such a thing as the strong...Ch. 41 - Prob. 7QCh. 41 - What is the experimental evidence in favor of...Ch. 41 - Prob. 9QCh. 41 - Prob. 10QCh. 41 - Prob. 11QCh. 41 - Prob. 12QCh. 41 - Prob. 13QCh. 41 - Prob. 14QCh. 41 - Prob. 15QCh. 41 - When a nucleus undergoes either or + decay, what...Ch. 41 - Prob. 17QCh. 41 - Prob. 18QCh. 41 - Prob. 19QCh. 41 - Prob. 20QCh. 41 - An isotope has a half-life of one month. After two...Ch. 41 - Prob. 22QCh. 41 - Prob. 23QCh. 41 - Prob. 24QCh. 41 - Prob. 25QCh. 41 - Prob. 26QCh. 41 - Prob. 27QCh. 41 - Prob. 28QCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 14PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 35PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Prob. 40PCh. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43PCh. 41 - Prob. 44PCh. 41 - Prob. 45PCh. 41 - Prob. 46PCh. 41 - Prob. 47PCh. 41 - Prob. 48PCh. 41 - Prob. 49PCh. 41 - Prob. 50PCh. 41 - Prob. 51PCh. 41 - Prob. 52PCh. 41 - Prob. 53PCh. 41 - Prob. 54PCh. 41 - Prob. 55PCh. 41 - Prob. 56PCh. 41 - (II) The activity of a radioactive source...Ch. 41 - Prob. 58PCh. 41 - Prob. 59PCh. 41 - Prob. 60PCh. 41 - Prob. 61PCh. 41 - Prob. 62GPCh. 41 - Prob. 63GPCh. 41 - Prob. 64GPCh. 41 - Prob. 65GPCh. 41 - Prob. 66GPCh. 41 - Prob. 67GPCh. 41 - Prob. 68GPCh. 41 - Prob. 69GPCh. 41 - Prob. 70GPCh. 41 - Prob. 71GPCh. 41 - Prob. 72GPCh. 41 - Prob. 73GPCh. 41 - Prob. 74GPCh. 41 - Prob. 75GPCh. 41 - Prob. 76GPCh. 41 - Prob. 77GPCh. 41 - Prob. 78GPCh. 41 - Prob. 79GPCh. 41 - Prob. 80GPCh. 41 - (a) A 72-gram sample of natural carbon contains...Ch. 41 - Prob. 82GPCh. 41 - Prob. 83GPCh. 41 - Prob. 84GPCh. 41 - Almost all of naturally occurring uranium is...Ch. 41 - Prob. 86GPCh. 41 - Prob. 87GPCh. 41 - Prob. 88GPCh. 41 - Prob. 89GPCh. 41 - Prob. 90GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the dose in Sv to the chest at a patient given an xray under the following conditions. The xray beam intensity is 1.50 W/m2, the area of the chest exposed is 0.0750 m2 35.0% of the xrays are absorbed in 20.0 kg of tissue, and the exposure time is 0.250 s.arrow_forwardData from the appendices and the periodic table may be needed for these problems. Show that the activity of the 14C in 1.00 g of 12C found in living tissue is 0.250 Bq.arrow_forwardSuppose one load irradiation plant uses a 137Cs source while another uses an equal activity of 60Co. Assuming equal fractions of the (rays from the sources are absorbed, why is more time needed to get the same dose using me 137Cs source?arrow_forward
- Iodine-131 is a beta-emitter, which decay by the first-order rate law with a half-life of 8.0 days. What is the activity in cps (counts per second) of 25.0 ng (2.5 x 10–8 g) sample of 131I (atomic mass = 131 g/mol)? (Avogadro’s #, NA = 6.02 x 1023/mol) (A) 1.2 x 108 cps (B) 1.5 x 1010 cps (C) 1.0 x 1011 cps (D) 4.1 x 1011 cpsarrow_forwardA drug tagged with Bq 99 43 Tc (half-life : = 6.05 h) is prepared for a patient. If the original activity of the sample was 1.1×104 Bq, what is its activity (R) after it has been on the shelf for 1.8 h?arrow_forwardIf we had a radioactive waste giving off 5 MeV of gamma radiation, how thick would the following substances need to be to reduce the radiation by 99%. Calculate for air, concrete, water, and lead.arrow_forward
- 3. When the whole body is evenly exposed to 10 mGy of gamma-ray radiation, find tissue-weighted dose equivalents HT for gonads, breast, red bone marrow, lungs, thyroid and bone surfaces.Express the answer in Sievert and rem.arrow_forward3. When the whole body is evenly exposed to 10 mGy of gamma-ray radiation, find tissue- weighted dose equivalents HT for gonads, breast, red bone marrow, lungs, thyroid and bone surfaces. Express the answer in Sievert and rem.arrow_forwardCompute the approximate nuclear radius of: (b) Nitrogen-14arrow_forward
- Q.4. (b) The linear absorption coefficient of lead for 1.0 MeV gamma rays is 74 m¹. Calculate the half value Thickness and Thickness of lead to reduce the GO intensity of gamma rays to of its original value. 100 (log 2 = 0.693 and log 10 = 2.30) -|arrow_forwardA sample containing I-131 has an activity of 6.40 x 108 Bq. How many days later will the sample have an activity of 5.80 × 10° Bq? The half-life of I-131 is 8.0252 days. d.arrow_forward✓ ON "O 2.75 MeV 0.511 MeV 0.511 MeV B, E= 1.73 MeV Eave = 0.721 Mev O MeVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College