Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 44AP
(a)
To determine
The first term in the Schrodinger equation for a freely moving particle reduces to the kinetic energy of the particle multiplied with the wave function.
(b)
To determine
The first term in the Schrodinger equation for a freely moving particle reduces to the kinetic energy of the particle multiplied with the wave function.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For a quantum particle of mass m in the ground state of a square well with length L and infinitely high walls, the uncertainty in position is Δx ≈ L. (a) Use the uncertainty principle to estimate the uncertainty in its momentum.(b) Because the particle stays inside the box, its average momentum must be zero. Its average squared momentum is then ⟨p2⟩ ≈ (Δp)2. Estimate the energy of the particle. (c) State how the result of part (b) compares with the actual ground-state energy.
Solving the Schrödinger equation for a particle of energy E 0
Calculate the values of the constants D, C, B, and A if knownCalculate the values of
the constants D, C, B, and A if known
and
2mE
2m(Vo-E)
a =
Let Ψ (x, t) = (A / (a2 + x2)) exp (-i 2 π E t / h ) be a normalized solution to Schrodinger’s equationfor constants A, a, and E.(a) What is A in terms of a?(b) What is the potential function V(x)?(c) Evaluate Δx Δp. Is the uncertainty principle satisfied?
Chapter 41 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 41.1 - Prob. 41.1QQCh. 41.2 - Prob. 41.2QQCh. 41.2 - Prob. 41.3QQCh. 41.5 - Prob. 41.4QQCh. 41 - Prob. 1OQCh. 41 - Prob. 2OQCh. 41 - Prob. 3OQCh. 41 - Prob. 4OQCh. 41 - Prob. 5OQCh. 41 - Prob. 6OQ
Ch. 41 - Prob. 7OQCh. 41 - Prob. 8OQCh. 41 - Prob. 9OQCh. 41 - Prob. 10OQCh. 41 - Prob. 1CQCh. 41 - Prob. 2CQCh. 41 - Prob. 3CQCh. 41 - Prob. 4CQCh. 41 - Prob. 5CQCh. 41 - Prob. 6CQCh. 41 - Prob. 7CQCh. 41 - Prob. 8CQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Two particles with masses m1 and m2 are joined by...Ch. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 48APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51APCh. 41 - Prob. 52APCh. 41 - Prob. 53APCh. 41 - Prob. 54APCh. 41 - Prob. 56APCh. 41 - Prob. 57APCh. 41 - Prob. 58APCh. 41 - Prob. 59CPCh. 41 - Prob. 60CPCh. 41 - Prob. 61CPCh. 41 - Prob. 62CPCh. 41 - Prob. 63CP
Knowledge Booster
Similar questions
- Consider 1D particle in a box and it’s given normalized wave function Psi = Nsin(bx) where v(x) = 0 outside the box and v(x) = cos(pix/L) inside the box from x = 0 to x = 1. (a) show that the wave function is a valid solution to the Schrödinger equation and what value of b makes it valid? (b) derive the eigenvalue expressionarrow_forwardA hypothetical one dimensional quantum particle has a normalised wave function given by (x) = ax - iß, where a and 3 are real constants and i = √-1. What is the most likely. x-position, II(x), for the particle to be found at? 0 11(x) == ○ II(2) = 0 ○ II(r) = 2/ O II(z) = 011(r) = ± √ +√ 13 aarrow_forwardWhat type of quantum mechanical problems can be solved using the time-independent Schrödinger equation (TISE)? h^2 dw(x) dx2 + U (x) y (x) = Eµ (x) 2m Any problem where the potential U(x) has no time dependence. O Any quantum mechanical problem can be solved Only problems that have a constant potential U (x) = Uo Any problem where the energy values E are positive O Any problem where the energy values E are negativearrow_forward
- Check which of the wavefunctions below represents a physically possible solution to the Schrodinger equation for a free electron? 1:) ▼ (r, t) = e'(2x102z-wt) 2:) V (x, t) = e'(2x10%z-wt) 3:) V (x, t) = e'(2x1014-wt) %3D 4:) V (r, t) = e"(2×1015z–ut) 5:) V (x, t) = e'(2x100z-wt)arrow_forwardShow that the wave function ψ = Ae i(i-ωt) is a solution to the Schrödinger equation (as shown), where k = 2π/λ and U = 0.arrow_forwardThe wave function of a quantum particle of mass m is ψ(x) = A cos (kx) + B sin (kx)where A, B, and k are constants. (a) Assuming the particle is free (U = 0), show that ψ(x) is a solution of the Schrödinger equation (as shown). (b) Find the corresponding energy E of the particle.arrow_forward
- An electron moves in the x direction with a speed of 3.6 x 10 m/s. We can measure its speed to a precision of 1%. With what precision can we simultaneously measure its x coordinate?arrow_forwardWhat is the probability of the particle that in the box with a length of 2 nm is between x = 0.2 and x = 1.0 nm? Ѱ=√(2/L)*sin(nπx/L)arrow_forwardAngular momentum in quantum mechanics is given by L = Lxi+Lyj+Lzk with components Lx = ypz- zpy, Ly = zpx - xpz, Lz = xpy - ypx. a) Use the known commutation rules for x, y, z, px, py and pz to show that [Ly, Lz] = ihLx. b) Consider the spherical harmonic Y1, -1([theta], [phi]) = (1/2)*sqrt(3/2pi)*sin[theta]*e-i[phi], where [theta] and [phi] are the polar and azimuthal angles, respectively. -> i) Express Y1, -1 in terms of cartesian coordinates. -> ii) Show that Y1, -1 is an eigenfunction of Lz. ci) Express the wavefunction [psi]210 for the 2pz orbital of the hydrogen atom (derived in the lectures and given in the notes) in cartesian coordinates. [Note: This involves a different spherical harmonic than in (b).] ii) Based on this expression, show that this wavefunction satisfies the three-dimensional stationary Schrodinger equation of the hydrogen atom, and determine the corresponding energy. I have attached the question better formatted, as well as the information from…arrow_forward
- An electron is moving past the square well shown in Fig. . The electron has energy E = 3U0 . What is the ratio of the de Broglie wavelength of the electron in the region x 7 L to the wavelength for 0 6 x 6 L?arrow_forwardA quantum particle in an infinitely deep square well has a wave function given by ψ2(x) = √2/L sin (2πx/L)for 0 ≤ x ≤ L and zero otherwise. (a) Determine the expectation value of x. (b) Determine the probability of finding the particle near 1/2 L by calculating the probability that the particle lies in the range 0.490L ≤ x ≤ 0.510L. (c) What If? Determine the probability of finding the particle near 1/4L bycalculating the probability that the particle lies in the range 0.240L ≤ x ≤ 0.260L. (d) Argue that the result of part (a)does not contradict the results of parts (b) and (c).arrow_forwardConsider an electron in a one-dimensional box of length L= 6 Å. The wavefunction for the particle is given as follows: Pn(x) = where n is the quantum number. Sketch the 2 and |Þ2|². Calculate the probability of finding electron in the first half of the box at n=2 level.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning