Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 13P
(a)
To determine
The length of region which electron is confined.
(b)
To determine
The energy required for electron to get into first excited state.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron is confined to a one-dimensional region in which its ground-state (n = 1) energy is 2.00 eV. What is the
length of the region?
A potential well has 4 energy levels as given here:
Energy of the state (eV)
13
12
9
4
Suppose that there are three electrons in the well, and that the system is in the first excited state. If the
system emits a photon, what energy could the photon have?
O (a) 3 eV
Ⓒ (b) 5 eV
O (c) 4 eV
O (d) 8 eV
(e) 9 eV x
X 0%
(a)What are the energies of the first three energy levels of an electron confined in a one-dimensional box of wavelength 0.70nm. Give your answer in electron volts (eV)
(b) How much energy must the electron lose to move from the n=2 energy level to the n=1 energy level? Again, give your answer in eV.
(c) Suppose that an electron can move from the n=2 level to n=1 level by emitting a photon of light. If energy is conserved, what must the photon wavelength be? Give your answer in nanometers
Chapter 41 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 41.1 - Prob. 41.1QQCh. 41.2 - Prob. 41.2QQCh. 41.2 - Prob. 41.3QQCh. 41.5 - Prob. 41.4QQCh. 41 - Prob. 1OQCh. 41 - Prob. 2OQCh. 41 - Prob. 3OQCh. 41 - Prob. 4OQCh. 41 - Prob. 5OQCh. 41 - Prob. 6OQ
Ch. 41 - Prob. 7OQCh. 41 - Prob. 8OQCh. 41 - Prob. 9OQCh. 41 - Prob. 10OQCh. 41 - Prob. 1CQCh. 41 - Prob. 2CQCh. 41 - Prob. 3CQCh. 41 - Prob. 4CQCh. 41 - Prob. 5CQCh. 41 - Prob. 6CQCh. 41 - Prob. 7CQCh. 41 - Prob. 8CQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Two particles with masses m1 and m2 are joined by...Ch. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 48APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51APCh. 41 - Prob. 52APCh. 41 - Prob. 53APCh. 41 - Prob. 54APCh. 41 - Prob. 56APCh. 41 - Prob. 57APCh. 41 - Prob. 58APCh. 41 - Prob. 59CPCh. 41 - Prob. 60CPCh. 41 - Prob. 61CPCh. 41 - Prob. 62CPCh. 41 - Prob. 63CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A proton is in a one-dimensional box of width 7.8 pm (1 pm = 1 x 10-¹2 m). The energy of the proton is equal to the absolute value of the ground state of a hydrogen atom. What state is the proton in?arrow_forwardAn electron is confined to move in the xy plane in a rectangle whose dimensions are Lx and Ly. That is, the electron is trapped in a two dimensional potential well having lengths of Lx and Ly. In this situation, the allowed energies of the electron depend on the quant numbers Nx and Ny, the allowed energies are given by E = H^2/8Me ( Nx^2/ Lx^2 + Ny^2/Ly^2) i) assuming Lx and Ly =L. Find the energies of the lowest for all energy levels of the electron ii) construct an energy level diagram for the electron and determine the energy difference between the second exited state and the ground state?arrow_forwardThe electrons within the T-system of conjugated hydrocarbons may be treated as particles confined within a one-dimensional box. The lowest energy transition in the spectrum of a polyene hydrocarbon corresponds to excitation of an electron from the highest occupied energy level to the lowest unoccupied level. If the hydrocarbon contains 6 electrons and has a spectral transition at a wavelength of 278 nm, estimate the effective length of the TT-system. The estimated length = nm. Hint: you will need to fill the energy diagram to know which energy levels are involved in the transition. me = 9.110 x 1031 kg (Enter in e-notation, e.g. 1.23e-4, tolerance ±5%)arrow_forward
- In class, we derived the formula for the power radiated by an accelerating charge. The classical model of the Hydrogen atom treats the electron as a point charge moving in a circular orbit about the inertial proton. In its ground state, the kinetic energy of this electron is 13.6 eV, and it’s radius is equal to the Bohr radius a0 = 0.0529 nm. If this electron behaves classically, what fraction of its energy does it radiate per orbit? Per second?arrow_forwardAssume that the nucleus of an atom can be regarded as a three-dimensional box of width 2:10-¹4 m. If a proton moves as a particle in this box, find (a) the ground-state energy of proton in MeV and (b) the energies of the first excited state. (c) What are the degenerates of these states? Constants: h = 6.626-10-34 [J-s], m = 1.673-10-27 [kg] and ħ=h/2π.arrow_forwardCompute the intrinsic line-width (Δλ) of the Lyman α line (corresponding to the n=2 to n=1) transition for the Hydrogen atom. You may assume that the electron remains in the excited state for a time of the order of 10^−8s. The line-width may be computed using:ΔE=(hc/λ^2)Δλarrow_forward
- A beam of electrons is incident on a barrier that is 0.60 nm wide and 6.40 eV high. If the number of electrons striking the barrier each second is 6.50 ✕ 1021 /s with an energy of 5.35 eV, then how long would it take for a single electron to be transmitted through the barrier?arrow_forwardWhen an electron in a one-dimensional box makes a transition from the n = 1 energy level to the n = 2 level, it absorbs a photon of wavelength 426 nm. What is the wavelength of that photon when the electron undergoes a transition (a) from the n = 2 to the n = 3 energy level and (b) from the n = 1 to the n = 3 energy level? (c) What is the width L of the box?arrow_forwardA proton is trapped in a one-dimensional box of length L. If the zero-point energy is to be 71.0 eV, what is L?arrow_forward
- An electron is in a three-dimensional box with side lengths LX = 0.600 nm and LY = LZ = 2LX. What are the quantum numbers nX, nY, and nZ and the energies, in eV, for the four lowest energy levels? What is the degeneracy of each (including the degeneracy due to spin)?arrow_forwardWhat is the energy in eV and wavelength in µm of a photon that, when absorbed by a hydrogen atom, could cause a transition from the n = 4 to the n = 6 energy level? (a) energy in eV? (b) wavelength in µm?arrow_forwardAn electron in a one-dimensional infinite potential well of length L has ground-state energy E1.The length is changed to L' so that the new ground-state energy is E'1 = 0.500E1 .What is the ratio L'/L?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax