Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
Question
Book Icon
Chapter 41, Problem 57AP

(a)

To determine

The expectation value x0.

(a)

Expert Solution
Check Mark

Answer to Problem 57AP

The expectation value x0 is 0.

Explanation of Solution

Write the expectation relation.

  x0=ψ0(x)*xψ0(x)dx                                                                                 (I)

Here, x0 is the expectation value and ψ(x) is the wave function

Conclusion:

Substitute (aπ)1/2eax2 for ψ0(x) and (aπ)1/2eax2 for ψ0(x)* and simplify.

  x0=((aπ)1/2eax2)x((aπ)1/2eax2)dx=x(aπ)1/2eax2dx

It is an odd function. The integration of odd function goes to zero.

    x0=x(aπ)1/2eax2dx=0

Therefore, the expectation value x0 is 0.

(b)

To determine

The expectation value x1.

(b)

Expert Solution
Check Mark

Answer to Problem 57AP

The expectation value x1 is 0.

Explanation of Solution

Rewrite the expectation relation.

  x1=ψ0(x)*xψ0(x)dx

Here, x1 is the expectation value.

Conclusion:

Substitute (4a3π)1/2x2eax2/2 for ψ0(x) and (4a3π)1/2x2eax2/2 for ψ0(x)* and simplify.

  x1=((4a3π)1/2x2eax2/2)x((4a3π)1/2x2eax2/2)dx=x(4a3π)1/2x2eax2/2dx

It is an odd function. The integration of odd function goes to zero.

    x1=0

Therefore, the expectation value x1 is 0.

(c)

To determine

The expectation value x01.

(c)

Expert Solution
Check Mark

Answer to Problem 57AP

The expectation value x01 is 12a.

Explanation of Solution

Rewrite the expectation relation.

  x01=ψ0(x)*xψ0(x)dx

Here, x01 is the expectation value.

Write the given wave function.

  ψ01(x)=12[ψ0(x)ψ1(x)]

Conclusion:

Substitute 12[ψ0(x)+ψ1(x)] for ψ0(x) and 12[ψ0(x)+ψ1(x)] for ψ0(x)* and simplify.

  x01=12[ψ0(x)+ψ1(x)]x12[ψ0(x)+ψ1(x)]dx=x12(ψ0+ψ1)2dx=12x0+12x1+xψ0(x)ψ1(x)dx

First two term is an odd function. The integration of odd function goes to zero.

    x01=0+0+xψ0(x)ψ1(x)dx=xψ0(x)ψ1(x)dx

Substitute (aπ)1/2eax2/2 for ψ0(x) and (4a3π)1/2x2eax2/2 for ψ1(x) in the above expression and integrate.

  x01=x((aπ)1/2eax2/2)((4a3π)1/2x2eax2/2)dx=x(aπ)1/4eax2/2(4a3π)1/4xeax2/2dx=2(2a2π)1/20x2eax2dx=2(2a2π)1/214(πa3)1/2=12a

Therefore, the expectation value x01 is 12a.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
m C A block of mass m slides down a ramp of height hand collides with an identical block that is initially at rest. The two blocks stick together and travel around a loop of radius R without losing contact with the track. Point A is at the top of the loop, point B is at the end of a horizon- tal diameter, and point C is at the bottom of the loop, as shown in the figure above. Assume that friction between the track and blocks is negligible. (a) The dots below represent the two connected blocks at points A, B, and C. Draw free-body dia- grams showing and labeling the forces (not com ponents) exerted on the blocks at each position. Draw the relative lengths of all vectors to reflect the relative magnitude of the forces. Point A Point B Point C (b) For each of the following, derive an expression in terms of m, h, R, and fundamental constants. i. The speed of moving block at the bottom of the ramp, just before it contacts the stationary block ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown. Assume the positive direction is upward. Velocity (m/s) 3.0 2.5 2.0 1.5 1.0 0.5 0 0 5.0 10 15 20 25 Time (s) (a) Briefly describe the motion of the elevator. Justify your description with reference to the graph. (b) Assume the elevator starts from an initial position of y = 0 at t=0. Deriving any numerical values you need from the graph: i. Write an equation for the position as a function of time for the elevator from t=0 to t = 3.0 seconds. ii. Write an equation for the position as a function of time for the elevator from t = 3.0 seconds to t = 19 seconds. (c) A student of weight mg gets on the elevator and rides the elevator during the time interval shown in the graph. Consider the force of con- tact, F, between the floor and the student. How Justify your answer with reference to the graph does F compare to mg at the following times? and your equations above. i. = 1.0 s ii. = 10.0 s
Students are asked to use circular motion to measure the coefficient of static friction between two materials. They have a round turntable with a surface made from one of the materials, for which they can vary the speed of rotation. They also have a small block of mass m made from the sec- ond material. A rough sketch of the apparatus is shown in the figure below. Additionally they have equipment normally found in a physics classroom. Axis m (a) Briefly describe a procedure that would allow you to use this apparatus to calculate the coefficient of static friction, u. (b) Based on your procedure, determine how to analyze the data collected to calculate the coefficient of friction. (c) One group of students collects the following data. r (m) fm (rev/s) 0.050 1.30 0.10 0.88 0.15 0.74 0.20 0.61 0.25 0.58 i. Use the empty spaces in the table as needed to calculate quantities that would allow you to use the slope of a line graph to calculate the coefficient of friction, providing labels with…

Chapter 41 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill