Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 39P
(a)
To determine
Normalize the wave function for the ground state.
(b)
To determine
The probability of finding the oscillator in a narrow interval.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the following three wave functions:
$₁(y) = C₁e¹²³, 4₂(y) = C₂e-¹²/²₁ 43(y) = C₁ (e-y² + ye-y²/²)
(a) Find the constants C₁, C2, and C3 so that 41, 42, and 43 are normalized.
(b) Find the probability that each one of the states will be in the interval -1 < y < 1.
A particle is described by the wave function
[V5 cos 0 + sin(e + 4) + sin(0 – ø)],
2/3n
(a)
Express 4(0, 4) in terms of spherical harmonics
(b)
Calculate p and Lzµ. Is y an eigenstate of I? and L,?
(c)
Calculate Î44 and (L4)
If the measurement of Î, is carried out, find the probability of getting
the results 0,ħ and -ħ.
(d)
Problem 3. Consider the two example systems from quantum mechanics. First, for a
particle in a box of length 1 we have the equation
h² d²v
2m dx²
EV,
with boundary conditions (0) = 0 and (1) = 0.
Second, the Quantum Harmonic Oscillator (QHO)
V = EV
h² d²
2m da² +ka²)
1
+kx²
2
(a) Write down the states for both systems. What are their similarities and differences?
(b) Write down the energy eigenvalues for both systems. What are their similarities
and differences?
(c) Plot the first three states of the QHO along with the potential for the system.
(d) Explain why you can observe a particle outside of the "classically allowed region".
Hint: you can use any state and compute an integral to determine a probability of
a particle being in a given region.
Chapter 41 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 41.1 - Prob. 41.1QQCh. 41.2 - Prob. 41.2QQCh. 41.2 - Prob. 41.3QQCh. 41.5 - Prob. 41.4QQCh. 41 - Prob. 1OQCh. 41 - Prob. 2OQCh. 41 - Prob. 3OQCh. 41 - Prob. 4OQCh. 41 - Prob. 5OQCh. 41 - Prob. 6OQ
Ch. 41 - Prob. 7OQCh. 41 - Prob. 8OQCh. 41 - Prob. 9OQCh. 41 - Prob. 10OQCh. 41 - Prob. 1CQCh. 41 - Prob. 2CQCh. 41 - Prob. 3CQCh. 41 - Prob. 4CQCh. 41 - Prob. 5CQCh. 41 - Prob. 6CQCh. 41 - Prob. 7CQCh. 41 - Prob. 8CQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Two particles with masses m1 and m2 are joined by...Ch. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 48APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51APCh. 41 - Prob. 52APCh. 41 - Prob. 53APCh. 41 - Prob. 54APCh. 41 - Prob. 56APCh. 41 - Prob. 57APCh. 41 - Prob. 58APCh. 41 - Prob. 59CPCh. 41 - Prob. 60CPCh. 41 - Prob. 61CPCh. 41 - Prob. 62CPCh. 41 - Prob. 63CP
Knowledge Booster
Similar questions
- An electron is trapped in a one-dimensional infinite potential well that is 460 pm wide; the electron is in its ground state. What is the probability that you can detect the electron in an interval of width δx = 5.0 pm centered at x = 300 pm? (Hint: The interval δx is so narrow that you can take the probability density to be constant within it.)arrow_forwardIn the canonical ensemble, we control the variables T, p, and N, and the fundamental function is the Gibbs free energy (G). But if we control T, p, and μ, then we will have a different fundamental function, Z (This is the case for cells that often regulate their temperature, pressure, and chemical potentials to maintain equilibrium). Which of the below options should the Z function equal? H - TS - μN H + TS + μN H + TS - μN G + μN F - pV - μN -H + TS + μNarrow_forward3arrow_forward
- A one-dimensional classical harmonic oscillator with a translational total energy E = 1 / 2m (p2) + 1/2 kx 2 : a) Find the partition function. b) Find the average energy. c) Find the Helmholtz free energy. D) Find its entropy.arrow_forwardA one-dimensional classical harmonic oscillator with translation total energy E = 1 / 2m (p2) + 1/2 kx**2: A) Find the partition function. b) Find the average energy. c) Find the Helmholtz free energy. d) Find its entropy.arrow_forwardThe Einstein's model makes the assumption that a solid can be treated a set of N identical, independent harmonic oscillators. Compute the heat capacity for such a system. Make the simplifying assumption that a single harmonic oscillator is described by the quantized energy levels: E, = kħw, where k = 0,1, 2, ....arrow_forward
- 15 6x4 – 12Lx³ + 15 L²x? - 3,3 (- L²r? L3x 6r4 - N2 2me 12La3 dx = dx 2 2 2 Evaluate the integral in the numerator. p*H@ dx = N² 40m h² L³ e 40me The denominator of the E expression from Step 1 is 6 _ 3Lx + 13 ,2 4 -L²x 4 Lx³ + F8-3Lz' + 12rt - (%) Lz3 + +L교2 p dx = N² dx Evaluate the integral in the denominator. 1 1 φ φ αχx = N2 840 840 Step 3 of 6 Divide the numerator by the denominator (both from Step 2) and simplify. (Use the following as necessary: ħ, L, me, P, T, and x.) 21h? E L²m 21h? L²me e Step 4 of 6 Calculate the energy for an electron in a 0.43-nm box using the formula from Step 3. = 4.0 0.26 X 840 kJ•mol-1 φ Step 5 of 6 Calculate the exact energy for an electron in the first excited state in a 0.43-nm box. n2h2 Recall that for a particle in a one-dimensional box we can write En we can therefore calculate an exact solution. 8mL2' Eexact = 4.0 197 X kJ-mol-1 Submitarrow_forwardCalculate the transmission probability for quantum-mechanical tunneling in each of the following cases. (a) An electron with an energy deficit of U - E= 0.010 0 eV is incident on a square barrier of width L = 0.100 nm. (b) An electron with an energy deficit of 1.00 eV is incident on the same barrier. (c) An alpha particle (mass 6.64 × 10-27 kg) with an energy deficit of 1.00 MeV is incident on a square barrier of width 1.00 fm. (d) An 8.00-kg bowling ball withan energy deficit of 1.00 J is incident on a square barrier of width 2.00 cm.arrow_forwardConsider a particle in a box of length L= 1 for the n= 2 state. The wave function is defined as: (x) = sin (27x) %3| Normalize the wave function.arrow_forward
- A particle is in a three-dimensional box. The y length of the box is twice the x length, and the z length is one-third of the y length. (a) What is the energy difference between the first excited level and the ground level? (b) Is the first excited level degenerate? (c) In terms of the x length, where is the probability distribution the greatest in the lowest-energy level?arrow_forwardA proton is confined in box whose width is d = 750 nm. It is in the n = 3 energy state. What is the probability that the proton will be found within a distance of d/n from one of the walls? [Hint: the average value sin2x over one or more of its cycles is 1/2.] Include a sketch of U(x) and ?(x).arrow_forwardA single electron of mass m can move freely along a one-dimensionl gold nanowire. Let x be the position coordinate of the electron along the wire. (a) Let ø (x) be the wave function of the electron. The quantity |ø (x)| has dimensions of inverse length. Explain very briefly the meaning of this quantity as a probability density. (b) Let us assume that $ (x) = A sin (3kox) (2) where A and ko are fixed, positive constants. Establish whether this wave function represents an eigenstate of momentum p. Justify your answer. Hint: the momentum operator is p -ih. - (c) Establish whether the wave function (x) given in Eq. (2) represents an eigenstate of kinetic energy K. Justify your answer. Hint: the kinetic energy operator is K = p²/2m. (d) Let us now assume that the gold nanowire mentioned above is not infinite, but extends over a finite length from r= 0 to x = L. Inside this region, the potential energy of the electron is zero, but outside this region the potential energy is infinite…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning