
Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 75P
This water jet of 50 mm diameter moving at 30 m/s is divided in half by a “splitter” on the stationary flat plate. Calculate the magnitude and direction of the force on the plate. Assume that flow is in a horizontal plane.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Only question 2
Only question 1
Only question 3
Chapter 4 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 4 - An ice-cube tray containing 250 mL of freshwater...Ch. 4 - A hot air balloon with an initial volume of 2600...Ch. 4 - A fully loaded Boeing 777-200 jet transport...Ch. 4 - On the Milford Trek in New Zealand, there is a...Ch. 4 - A high school experiment consists of a block of...Ch. 4 - For a small particle of styrofoam (density = 19.2...Ch. 4 - Air at 20C and an absolute pressure of 101.3 kpa...Ch. 4 - A block of copper of mass 5 kg is heated to 90C...Ch. 4 - The average rate of heat loss from a person to the...Ch. 4 - The velocity field in the region shown is given by...
Ch. 4 - The area shown shaded is in a flow where the...Ch. 4 - Obtain an expression for the kinetic energy flux,...Ch. 4 - A 0.3 m by 0.5 m rectangular air duct carries a...Ch. 4 - Across a shock wave in a gas flow there is a great...Ch. 4 - Water flows in a pipeline composed of 75-mm and...Ch. 4 - The velocity distribution for laminar flow in a...Ch. 4 - A farmer is spraying a liquid through 10 nozzles,...Ch. 4 - A university laboratory that generates 15 m3/s of...Ch. 4 - Hydrogen is being pumped through a pipe system...Ch. 4 - Calculate the mean velocities for these...Ch. 4 - If the velocity profile in a passage of width 2R...Ch. 4 - Fluid with 1040 kg/m3 density is flowing steadily...Ch. 4 - A rice farmer needs to fill a 150 m 400 m field...Ch. 4 - In your kitchen, the sink is 60 cm by 45.7 cm. by...Ch. 4 - Fluid passes through this set of thin closely...Ch. 4 - A pipeline 0.3 m in diameter divides at a Y into...Ch. 4 - A manifold pipe of 3 in. diameter has four...Ch. 4 - You are trying to pump storm water out of your...Ch. 4 - In the incompressible flow through the device...Ch. 4 - Water enters a wide, flat channel of height 2h...Ch. 4 - Find the average efflux velocity V if the flow...Ch. 4 - Find V for this mushroom cap on a pipeline. P4.32Ch. 4 - Incompressible fluid flows steadily through a...Ch. 4 - A two-dimensional reducing bend has a linear...Ch. 4 - Water enters a two-dimensional, square channel of...Ch. 4 - Viscous liquid from a circular tank. D = 300 mm in...Ch. 4 - A rectangular tank used to supply water for a...Ch. 4 - A cylindrical tank, 0.3 m in diameter, drains...Ch. 4 - Air enters a tank through an area of 0.018 m2 with...Ch. 4 - A cylindrical tank, of diameter D = 50 mm, drains...Ch. 4 - A conical flask contains water to height H = 36.8...Ch. 4 - Water flows steadily past a porous flat plate....Ch. 4 - A tank of fixed volume contains brine with initial...Ch. 4 - A conical funnel of half-angle = 30 drains...Ch. 4 - Evaluate the net rate of flux of momentum out...Ch. 4 - Water flows steadily through a pipe of length L...Ch. 4 - Evaluate the net momentum flux through the bend of...Ch. 4 - Evaluate the net momentum flux through the channel...Ch. 4 - A conical enlargement in a vertical pipeline is 5...Ch. 4 - A 100-mm nozzle is bolted (with 6 bolts) to the...Ch. 4 - The projectile partially fills the end of the 0.3...Ch. 4 - Considering that in the fully developed region of...Ch. 4 - A jet of water issuing from a stationary nozzle at...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - A 6-in.-diameter horizontal pipeline bends through...Ch. 4 - The axes of the pipes are in a vertical plane. The...Ch. 4 - Water flows through a tee in a horizontal pipe...Ch. 4 - In a laboratory experiment, the water flow rate is...Ch. 4 - A gate is 1 m wide and 1.2 m tall and hinged at...Ch. 4 - Water flows steadily through a fire hose and...Ch. 4 - Two types of gasoline are blended by passing them...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - The pressure difference results from head loss...Ch. 4 - Obtain expressions for the rate of change in mass...Ch. 4 - Water is flowing steadily through the 180 elbow...Ch. 4 - Water flows steadily through the nozzle shown,...Ch. 4 - The pump, suction pipe, discharge pipe, and nozzle...Ch. 4 - The passage is 1.2 m wide normal to the paper....Ch. 4 - If the two-dimensional flow rate through this...Ch. 4 - Assume the bend of Problem 4.35 is a segment of a...Ch. 4 - A flat plate orifice of 50 mm diameter is located...Ch. 4 - At rated thrust, a liquid-fueled rocket motor...Ch. 4 - Flow from the end of a two-dimensional open...Ch. 4 - Calculate the magnitude and direction of the...Ch. 4 - This water jet of 50 mm diameter moving at 30 m/s...Ch. 4 - If the splitter is removed from the plate of...Ch. 4 - Consider flow through the sudden expansion shown....Ch. 4 - A conical spray head is shown. The fluid is water...Ch. 4 - A curved nozzle assembly that discharges to the...Ch. 4 - The pump maintains a pressure of 10 psi at the...Ch. 4 - A motorboat moves up a river at a speed of 9 m/s...Ch. 4 - A 30 reducing elbow is shown. The fluid is water....Ch. 4 - A monotube boiler consists of a 6 m length of...Ch. 4 - Water is discharged at a flow rate of 0.3m3/s from...Ch. 4 - A nozzle for a spray system is designed to produce...Ch. 4 - The horizontal velocity in the wake behind an...Ch. 4 - An incompressible fluid flows steadily in the...Ch. 4 - Consider the incompressible flow of fluid in a...Ch. 4 - Air at standard conditions flows along a flat...Ch. 4 - Gases leaving the propulsion nozzle of a rocket...Ch. 4 - Two large tanks containing water have small...Ch. 4 - Students are playing around with a water hose....Ch. 4 - A 2-kg disk is constrained horizontally but is...Ch. 4 - A stream of water from a 50-mm-diameter nozzle...Ch. 4 - A plane nozzle discharges vertically 1200 L/s per...Ch. 4 - In ancient Egypt, circular vessels filled with...Ch. 4 - Incompressible fluid of negligible viscosity is...Ch. 4 - The narrow gap between two closely spaced circular...Ch. 4 - Design a clepsydra (Egyptian water clock), which...Ch. 4 - Water from a stationary nozzle impinges on a...Ch. 4 - A freshwater jet boat takes in water through side...Ch. 4 - The Canadair CL-215T amphibious aircraft is...Ch. 4 - Water, in a 100-mm-diameter jet with speed of 30...Ch. 4 - Consider a series of turning vanes struck by a...Ch. 4 - A steady jet of water is used to propel a small...Ch. 4 - The cart of Problem 4.105 is accelerated by a jet...Ch. 4 - A vane/slider assembly moves under the influence...Ch. 4 - A cart is propelled by a liquid jet issuing...Ch. 4 - For the vane/slider problem of Problem 4.107, find...Ch. 4 - If the cart of Problem 4.105 is released at t = 0,...Ch. 4 - The wheeled cart shown rolls with negligible...Ch. 4 - A rocket sled is to be slowed from an initial...Ch. 4 - Starting from rest, the cart shown is propelled by...Ch. 4 - Solve Problem 4.107 if the vane and slider ride on...Ch. 4 - For the vane/slider problem of Problem 4.114, plot...Ch. 4 - A rectangular block of mass M, with vertical...Ch. 4 - A vertical jet of water impinges on a horizontal...Ch. 4 - A rocket sled traveling on a horizontal track is...Ch. 4 - A rocket sled accelerates from rest on a level...Ch. 4 - A rocket sled with initial mass of 900 kg is to be...Ch. 4 - A rocket sled with initial mass of 3 metric tons,...Ch. 4 - A home-made solid propellant rocket has an initial...Ch. 4 - Neglecting air resistance, what speed would a...Ch. 4 - The moving tank shown is to be slowed by lowering...Ch. 4 - The 90 reducing elbow of Example 4.6 discharges to...Ch. 4 - Crude oil (SG = 0:95) from a tanker dock flows...Ch. 4 - The simplified lawn sprinkler shown rotates in the...Ch. 4 - Calculate the torque about the pipes centerline in...Ch. 4 - A fire truck is equipped with a 66 ft long...Ch. 4 - Calculate the torque exerted on the flange joint...Ch. 4 - Consider the sprinkler of Problem 4.130 again....Ch. 4 - A small lawn sprinkler is shown. The sprinkler...Ch. 4 - When a garden hose is used to fill a bucket, water...Ch. 4 - A pipe branches symmetrically into two legs of...Ch. 4 - Compressed air is stored in a pressure bottle with...Ch. 4 - A turbine is supplied with 0.6 m3/s of water from...Ch. 4 - Air is drawn from the atmosphere into a...Ch. 4 - At high speeds the compressor and turbine of the...Ch. 4 - Transverse thrusters are used to make large ships...Ch. 4 - All major harbors are equipped with fire boats for...Ch. 4 - A pump draws water from a reservoir through a...Ch. 4 - Liquid flowing at high speed in a wide, horizontal...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Describe a method that can be used to gather a piece of data such as the users age.
Web Development and Design Foundations with HTML5 (8th Edition)
Fill in the blanks in each of the following statements: A relation that has no partial functional dependencies ...
Modern Database Management
In the following exercises, write a program to carry out the task. The program should use variables for each of...
Introduction To Programming Using Visual Basic (11th Edition)
_____ are characters or symbols that perform operations on one or more operands.
Starting Out With Visual Basic (8th Edition)
What is the disadvantage of having too many features in a language?
Concepts Of Programming Languages
Explain what must be done when fully replicating a database but allowing only one computer to process updates.
Database Concepts (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I have Euler parameters that describe the orientation of N relative to Q, e = -0.7071*n3, e4 = 0.7071. I have Euler parameters that describe the orientation of U relative to N, e = -1/sqrt(3)*n1, e4 = sqrt(2/3). After using euler parameter rule of successive rotations, I get euler parameters that describe the orientation of U relative to Q, e = -0.4082*n1 - 0.4082*n2 - 0.5774*n3. I need euler parameters that describe the orientation of U relative to Q in vector basis of q instead of n. How do I get that?arrow_forwardDescribe at least 4 processes in engineering where control charts are (or should be) appliedarrow_forwardDescribe at least two (2) processes where control charts are (or should be) applied.arrow_forward
- Problem 3: A cube-shaped spacecraft is in a circular Earth orbit. Let N (n,) be inertial and the spacecraft is denoted S (ŝ₁). The spacecraft is described such that ¯½º = J ŝ₁ŝ₁ + J ŝ₂§₂ + J §¸Ŝ3 Location of the spacecraft in the orbit is determined by the orbit-fixed unit vectors ê, that are oriented by the angle (Qt), where is a constant angular rate. 52 €3 3> 2t 55 Λ Из At the instant when Qt = 90°, the spacecraft S is oriented relative to the orbit such that 8₁ = 0° Space-three 1-2-3 angles 0₂ = 60° and ES = $₂ rad/s 0₁ = 135° (a) At this instant, determine the direction cosine matrix that describes the orientation of the spacecraft with respect to the inertial frame N.arrow_forwardThis problem illustrates that the factor of safety for a machine element depends on the particular point selected for analysis. Here you are to compute factors of safety, based upon the distortion-energy theory, for stress elements at A and B of the member shown in the figure. This bar is made of AISI 1006 cold-drawn steel and is loaded by the forces F = 1.100 kN, P = 8.00 kN, and T = 50.00 N-m. Given: Sy = 280 MPa. B -100 mm- 15-mm D. a) Determine the value of the axial stress at point B. b) Determine the value of the shear stress at point B. c) Determine the value of the Von Mises stress at point B. P Farrow_forwardA piston-cylinder device initially contains 0.08 m^3 of nitrogen gas at 130 kPa and 170°C. The nitrogen is expanded to a pressure of 80 kPa via isentropic expansion. Determine the final temperature and the boundary work done by the system during this process.arrow_forward
- A Carnot (ideal) heat pump is to be used to heat a house and maintain it at 22°C in winter. On a day when the average outdoor temperature remains at about 0°C, the house is estimated to lose heat at a rate of 65,000 kJ/h. If the heat pump consumes 6 kW of power while operating, determine: (a) how long the heat pump ran on that day (b) the total heating costs, assuming an average price of 11¢/kWh for electricity (c) the heating cost for the same day if an 85% efficient electric furnace is used instead of a heat pump.arrow_forwardFrom the information in the image, I needed to find the orientation of U relative to Q in vector basis q_hat. I transformed the euler angle/axis representation to euler parameters. Then I got its conjugate in order to get the euler parameter in N frame relative to Q. The problem gave the euler angle/axis representation in Q frame relative to N, so I needed to find the conjugate. Then I used the euler parameter rule of successive rotation to find the final euler parameters that describe the orientation of U relative to Q. However that orientation is in n_hat which is the intermediate frame. How do I get the final result in q_hat?arrow_forwardA proposed method of power generation involves collecting and storing solar energy in large artificial lakes a few meters deep, called solar ponds. Solar energy is absorbed by all parts of the pond, and the water temperature rises everywhere. The top part of the pond, however, loses much of the heat it absorbs to the atmosphere, and as a result, the cool surface water serves as insulation for the bottom part of the pond and helps trap the energy there. Usually, salt is planted at the bottom of the pond to prevent the rise of this hot water to the top. A heat engine that uses an organic fluid, such as alcohol, as the working fluid can be operated between the top and the bottom portions of the pond. If the water temperature is 27°C near the surface and 72°C near the bottom of the pond, determine the maximum thermal efficiency that this power plant can have. Treat the cycle as an ideal heat engine. Would a heat engine operating under these temperature conditions (27°C and 72°C) be…arrow_forward
- A standard Carnot heat engine cycle is executed in a closed system between the temperature limits of 320 and 1350 K, with air as the working fluid. The pressures before and after the isothermal compression are 150 and 300 kPa, respectively. Sketch the TS diagram for this cycle. If the net work output per cycle is 0.75 kJ, determine the efficiency of the cycle and the heat transfer to the air (working fluid) per cycle.arrow_forwardPROBLEM 10: A sleeve in the form of a circular tube of length L is Nut placed around a bolt and fitted between washers at each end. The nut is then turned until it is just snug. Use material properties as follows: For the sleeve, as = 21 x 106/°C and Es = 100 GPa Washer Bolt ·L· Sleeve Bolt head For the bolt, αB = 10 × 10-6/°C and EB = 200 GPa. 1. Calculate the temperature rise that is required to produce a compressive stress of 25 MPa in the sleeve.arrow_forwardThis problem illustrates that the factor of safety for a machine element depends on the particular point selected for analysis. Here you are to compute factors of safety, based upon the distortion-energy theory, for stress elements at A and B of the member shown in the figure. This bar is made of AISI 1006 cold-drawn steel and is loaded by the forces F = 1.100 kN, P = 8.00 kN, and T = 50.00 N·m. Given: Sy = 280 MPa. B -100 mm- 15-mm D. a) What is the value of the axial stress at point A? b)What is the value of the shear stress at point A? c)Determine the value of the Von Mises stress at point A. P Farrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY