Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 26P
A pipeline 0.3 m in diameter divides at a Y into two branches 200 mm and 150 mm in diameter. If the flow rate in the main line is 0.3 m3/s and the mean velocity in the 200-mm pipe is 2.5 m/s, what is the flow rate in the 150-mm pipe?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 600mm diameter pipeline (A) conveying water splits into two smaller pipelines (B) and (C), 375mm and 225mm respectively in diameter. If the velocity of flow in (A) is 2.0m/sec and the flowrate in (B) is twice that in (C), calculate the flowrate in all pipes and the velocity of flow in pipes (B) and (C)..
4.
A pipe carries oil of density 800 kg/m³. At a given point (1) the pipe has a bore area of
0.005 m² and the oil flows with a mean velocity of 4 m/s with a gauge pressure of 800 kPa.
Point (2) is further along the pipe and there the bore area is 0.002 m² and the level is 50 m
above point (1). Calculate the pressure at this point (2). Neglect friction. (374 kPa)
Water is pumped at a rate of 21.4 m/s from tank (A) and out through a 300.5 m pipe to tank (B). The surface roughness
of the pipe is 0.046 mm. When the water levels are as shown in the given figure, the head provided by the pump is 70 m,
Calculate the pipe diameter (mm) if the water temperature is 10°C (do not assume the water mass density and the
ViScosity), Usef 0.02 for the first iteration and try only one more iterations (two in total) by using Swamee and Jain
formula.
Elevation
135
Elevation
140 m
Tank (B)
Tievation
100m
Tank LA)
Jund:
Elevitions in
Write the answer for any numbers after the declmal
Chapter 4 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 4 - An ice-cube tray containing 250 mL of freshwater...Ch. 4 - A hot air balloon with an initial volume of 2600...Ch. 4 - A fully loaded Boeing 777-200 jet transport...Ch. 4 - On the Milford Trek in New Zealand, there is a...Ch. 4 - A high school experiment consists of a block of...Ch. 4 - For a small particle of styrofoam (density = 19.2...Ch. 4 - Air at 20C and an absolute pressure of 101.3 kpa...Ch. 4 - A block of copper of mass 5 kg is heated to 90C...Ch. 4 - The average rate of heat loss from a person to the...Ch. 4 - The velocity field in the region shown is given by...
Ch. 4 - The area shown shaded is in a flow where the...Ch. 4 - Obtain an expression for the kinetic energy flux,...Ch. 4 - A 0.3 m by 0.5 m rectangular air duct carries a...Ch. 4 - Across a shock wave in a gas flow there is a great...Ch. 4 - Water flows in a pipeline composed of 75-mm and...Ch. 4 - The velocity distribution for laminar flow in a...Ch. 4 - A farmer is spraying a liquid through 10 nozzles,...Ch. 4 - A university laboratory that generates 15 m3/s of...Ch. 4 - Hydrogen is being pumped through a pipe system...Ch. 4 - Calculate the mean velocities for these...Ch. 4 - If the velocity profile in a passage of width 2R...Ch. 4 - Fluid with 1040 kg/m3 density is flowing steadily...Ch. 4 - A rice farmer needs to fill a 150 m 400 m field...Ch. 4 - In your kitchen, the sink is 60 cm by 45.7 cm. by...Ch. 4 - Fluid passes through this set of thin closely...Ch. 4 - A pipeline 0.3 m in diameter divides at a Y into...Ch. 4 - A manifold pipe of 3 in. diameter has four...Ch. 4 - You are trying to pump storm water out of your...Ch. 4 - In the incompressible flow through the device...Ch. 4 - Water enters a wide, flat channel of height 2h...Ch. 4 - Find the average efflux velocity V if the flow...Ch. 4 - Find V for this mushroom cap on a pipeline. P4.32Ch. 4 - Incompressible fluid flows steadily through a...Ch. 4 - A two-dimensional reducing bend has a linear...Ch. 4 - Water enters a two-dimensional, square channel of...Ch. 4 - Viscous liquid from a circular tank. D = 300 mm in...Ch. 4 - A rectangular tank used to supply water for a...Ch. 4 - A cylindrical tank, 0.3 m in diameter, drains...Ch. 4 - Air enters a tank through an area of 0.018 m2 with...Ch. 4 - A cylindrical tank, of diameter D = 50 mm, drains...Ch. 4 - A conical flask contains water to height H = 36.8...Ch. 4 - Water flows steadily past a porous flat plate....Ch. 4 - A tank of fixed volume contains brine with initial...Ch. 4 - A conical funnel of half-angle = 30 drains...Ch. 4 - Evaluate the net rate of flux of momentum out...Ch. 4 - Water flows steadily through a pipe of length L...Ch. 4 - Evaluate the net momentum flux through the bend of...Ch. 4 - Evaluate the net momentum flux through the channel...Ch. 4 - A conical enlargement in a vertical pipeline is 5...Ch. 4 - A 100-mm nozzle is bolted (with 6 bolts) to the...Ch. 4 - The projectile partially fills the end of the 0.3...Ch. 4 - Considering that in the fully developed region of...Ch. 4 - A jet of water issuing from a stationary nozzle at...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - A 6-in.-diameter horizontal pipeline bends through...Ch. 4 - The axes of the pipes are in a vertical plane. The...Ch. 4 - Water flows through a tee in a horizontal pipe...Ch. 4 - In a laboratory experiment, the water flow rate is...Ch. 4 - A gate is 1 m wide and 1.2 m tall and hinged at...Ch. 4 - Water flows steadily through a fire hose and...Ch. 4 - Two types of gasoline are blended by passing them...Ch. 4 - A circular cylinder inserted across a stream of...Ch. 4 - The pressure difference results from head loss...Ch. 4 - Obtain expressions for the rate of change in mass...Ch. 4 - Water is flowing steadily through the 180 elbow...Ch. 4 - Water flows steadily through the nozzle shown,...Ch. 4 - The pump, suction pipe, discharge pipe, and nozzle...Ch. 4 - The passage is 1.2 m wide normal to the paper....Ch. 4 - If the two-dimensional flow rate through this...Ch. 4 - Assume the bend of Problem 4.35 is a segment of a...Ch. 4 - A flat plate orifice of 50 mm diameter is located...Ch. 4 - At rated thrust, a liquid-fueled rocket motor...Ch. 4 - Flow from the end of a two-dimensional open...Ch. 4 - Calculate the magnitude and direction of the...Ch. 4 - This water jet of 50 mm diameter moving at 30 m/s...Ch. 4 - If the splitter is removed from the plate of...Ch. 4 - Consider flow through the sudden expansion shown....Ch. 4 - A conical spray head is shown. The fluid is water...Ch. 4 - A curved nozzle assembly that discharges to the...Ch. 4 - The pump maintains a pressure of 10 psi at the...Ch. 4 - A motorboat moves up a river at a speed of 9 m/s...Ch. 4 - A 30 reducing elbow is shown. The fluid is water....Ch. 4 - A monotube boiler consists of a 6 m length of...Ch. 4 - Water is discharged at a flow rate of 0.3m3/s from...Ch. 4 - A nozzle for a spray system is designed to produce...Ch. 4 - The horizontal velocity in the wake behind an...Ch. 4 - An incompressible fluid flows steadily in the...Ch. 4 - Consider the incompressible flow of fluid in a...Ch. 4 - Air at standard conditions flows along a flat...Ch. 4 - Gases leaving the propulsion nozzle of a rocket...Ch. 4 - Two large tanks containing water have small...Ch. 4 - Students are playing around with a water hose....Ch. 4 - A 2-kg disk is constrained horizontally but is...Ch. 4 - A stream of water from a 50-mm-diameter nozzle...Ch. 4 - A plane nozzle discharges vertically 1200 L/s per...Ch. 4 - In ancient Egypt, circular vessels filled with...Ch. 4 - Incompressible fluid of negligible viscosity is...Ch. 4 - The narrow gap between two closely spaced circular...Ch. 4 - Design a clepsydra (Egyptian water clock), which...Ch. 4 - Water from a stationary nozzle impinges on a...Ch. 4 - A freshwater jet boat takes in water through side...Ch. 4 - The Canadair CL-215T amphibious aircraft is...Ch. 4 - Water, in a 100-mm-diameter jet with speed of 30...Ch. 4 - Consider a series of turning vanes struck by a...Ch. 4 - A steady jet of water is used to propel a small...Ch. 4 - The cart of Problem 4.105 is accelerated by a jet...Ch. 4 - A vane/slider assembly moves under the influence...Ch. 4 - A cart is propelled by a liquid jet issuing...Ch. 4 - For the vane/slider problem of Problem 4.107, find...Ch. 4 - If the cart of Problem 4.105 is released at t = 0,...Ch. 4 - The wheeled cart shown rolls with negligible...Ch. 4 - A rocket sled is to be slowed from an initial...Ch. 4 - Starting from rest, the cart shown is propelled by...Ch. 4 - Solve Problem 4.107 if the vane and slider ride on...Ch. 4 - For the vane/slider problem of Problem 4.114, plot...Ch. 4 - A rectangular block of mass M, with vertical...Ch. 4 - A vertical jet of water impinges on a horizontal...Ch. 4 - A rocket sled traveling on a horizontal track is...Ch. 4 - A rocket sled accelerates from rest on a level...Ch. 4 - A rocket sled with initial mass of 900 kg is to be...Ch. 4 - A rocket sled with initial mass of 3 metric tons,...Ch. 4 - A home-made solid propellant rocket has an initial...Ch. 4 - Neglecting air resistance, what speed would a...Ch. 4 - The moving tank shown is to be slowed by lowering...Ch. 4 - The 90 reducing elbow of Example 4.6 discharges to...Ch. 4 - Crude oil (SG = 0:95) from a tanker dock flows...Ch. 4 - The simplified lawn sprinkler shown rotates in the...Ch. 4 - Calculate the torque about the pipes centerline in...Ch. 4 - A fire truck is equipped with a 66 ft long...Ch. 4 - Calculate the torque exerted on the flange joint...Ch. 4 - Consider the sprinkler of Problem 4.130 again....Ch. 4 - A small lawn sprinkler is shown. The sprinkler...Ch. 4 - When a garden hose is used to fill a bucket, water...Ch. 4 - A pipe branches symmetrically into two legs of...Ch. 4 - Compressed air is stored in a pressure bottle with...Ch. 4 - A turbine is supplied with 0.6 m3/s of water from...Ch. 4 - Air is drawn from the atmosphere into a...Ch. 4 - At high speeds the compressor and turbine of the...Ch. 4 - Transverse thrusters are used to make large ships...Ch. 4 - All major harbors are equipped with fire boats for...Ch. 4 - A pump draws water from a reservoir through a...Ch. 4 - Liquid flowing at high speed in a wide, horizontal...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
These characters mark the beginning of a multi-line comment. a. // b. / c. / d. /
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
102* The sum of seven interior angles ofa closed-polygon traverse each read to the nearest
3 ” is
$99 a 59 '39...
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Line Numbers Write a program that asks the user for the name of a file. The program should display the contents...
Starting Out with Python (4th Edition)
What populates the Smalltalk world?
Concepts Of Programming Languages
ICA 8-36
A 10-liter [L] flask contains 1.3 moles [mol] of an ideal gas at a temperature of 20 degrees Celsius [...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Assume a telephone signal travels through a cable at two-thirds the speed of light. How long does it take the s...
Electric Circuits. (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. The water flows through a pipeline 1.2m diameter at a velocity of 3m/swhich bifurcates at a Y-junction into two branches. The first branch is 0.8min diameter and carries 1/3 of the flow, whereas the second branch carriesthe water in a velocity of 2.4m/s. Calculate the following: (i) discharge (ii) velocity in the first branch (iii) diameter of the second brancharrow_forwardA liquid (SG = 0.920) is being pumped from a reservoir as shown. The pressures at points 1 and 2 are -8 psi and 44 psi, respectively. The rate of flow in the pipe is 0.714 ft3/s. Neglect energy (friction) losses in the system. Use x = 4 ft., y = 7 ft. Use 1 hp = 550 lb-ft/s. Efficiency of the pump is 91%. What is the head in the pump (ft) ? Round off to two decimal places.arrow_forwardWater flows through a garden hose (ID = 20 mm) with a mean velocity of 1.8 m/s. Find the pressure drop for a section of hose that is 30 meters long and situated horizontally. Assume that f = 0.014.arrow_forward
- If 475mm diameter pipeline (A) conveying water splits into 2 smaller pipelines (B) and (C), 275mm and 200mm respectively in diameter. If the velocity of flow in (A) is 2.8 m/sec and the flowrate in (B) is twice that in (C), calculate the flowrate in all pipes and the velocity of flow in pipes (B) and (C).arrow_forwardreservoir A is at elevation 90 m above datum, furnishes water to a 600 mm pipe which leads to a point at elevation 30 m, the pipe being 610 m long. Here it branches into three pipes, 200 mm, 300 mm, and 150 mm diameter. The 200 mm pipe runs 300 m and discharges to reservoir B at elevation 75 m, the 300 mm runs 450 m to reservoir D at elevation 30 m. f=0.012 what is the rate of flow towards reservoir B most nearly gives?arrow_forward4. The system in Fig. consists of 1200 m (length) of 0.05 m (diameter) cast iron pipe, two 45° long-radius elbows, four 90° flanged long-radius elbows, and a fully open globe valve. If the elevation at point 1 is 400 m, what gage pressure is required at point 1 to deliver 0.005 m³/s of water at 20°C into the reservoir? Average surface roughness of cast iron is ε = 0.26 mm. For water at 20°C, take density, p = 998 kg/m³; dynamic viscosity, μ = 0.001 Pa-s; and acceleration due to gravity, g = 9.81 m/s². 90° elbow: KL90, elbow K₁ = 0.5 ent Elevation (1 400 m = 0.3 45° elbow: KL45,elbow=0.2 Elevation 500 m ! Sharp exit Open KL = 10 globe valve Klexit = 1arrow_forward
- A pipe tapers over 60m from 450mm in diameter to 675mm in diameter. The gauge pressure at the inlet is 75 kN/m2 and the gauge pressure at the outlet is 90 kN/m2. If the centreline of the pipe rises at a gradient of 1 in 80 and the energy loss due to friction is 0.01m per metre length determine the flowrate in the pipeline and the velocity at entry and exit.arrow_forwardA 500 mm diameter pipe gradually reduces to 20 mm diameter and the gradually enlarge to its original size. Given the pressure at the base of the convergence of 0.60 MPa with a flow of 0.08 cu. m/s, 1. What is the velocity at point 1? 2. What is the velocity head at point 2? 3. Neglecting the head loss, the pressure of the smallest section is?arrow_forwardI couldn't understand which points we named 1 and 2. For example, if we say 1 to the tip of the pipe, why is the velocity of V1 there 0?arrow_forward
- I want solvearrow_forwardA 12′′ pipe line carries oil of specific gravity 0.811 at a velocity of 80.0 ft/sec. At points A and B, measurements of pressure and elevation were 52.6 psi and 100.0 ft and 42.0 psi and 110.0 ft,respectively. For steady flow, find the lost head between A and B. indicate the free body diagramarrow_forwardNonearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License