
Concept explainers
A spring cannon is located at the edge of a table that is 1.20 m above the floor. A steel ball is launched from the cannon with speed vi at 35.0° above the horizontal. (a) Find the horizontal position of the ball as a function of vi at the instant it lands on the floor. We write this function as x(vi). Evaluate x for (b) vi = 0.100 m/s and for (c) vi = 100 m/s. (d) Assume vi is close to but not equal to zero. Show that one term in the answer to part (a) dominates so that the function x(vi) reduces to a simpler form. (c) If vi is very large, what is the approximate form of x(v)? (f) Describe the overall shape of the graph of the function x(vi).
(a)

The horizontal position of the ball as a function of
Answer to Problem 73AP
The horizontal position of the ball as a function of
Explanation of Solution
Given info: The located at the spring cannon is
Formula to calculate the vertical distance covered by the ball is,
Here,
The vertical component of the velocity is,
Here,
Substitute
Substitute
Solve the equation (2).
Formula to calculate the horizontal distance covered by the ball is,
Here,
The horizontal component of the velocity is,
Substitute
Substitute
Conclusion:
Therefore, the horizontal position of the ball as a function of
(b)

The horizontal position of the ball as
Answer to Problem 73AP
The horizontal position the ball as
Explanation of Solution
Given info: The located at the spring cannon is
From equation (IV),
Substitute
Conclusion:
Therefore, the horizontal position the ball as
(c)

The horizontal position of the ball as
Answer to Problem 73AP
The horizontal position the ball as
Explanation of Solution
Given info: The located at the spring cannon is
From equation (4),
Substitute
Conclusion:
Therefore, the horizontal position the ball as
(d)

The horizontal position of the ball as a function of
Answer to Problem 73AP
The horizontal position of the ball as a function of
Explanation of Solution
Given info: The located at the spring cannon is
From equation (IV),
The value of
Substitute
Conclusion:
Therefore, the horizontal position of the ball as a function of
(e)

The horizontal position of the ball as a function of
Answer to Problem 73AP
The horizontal position of the ball as a function of
Explanation of Solution
Given info: The located at the spring cannon is
From equation (4),
The term is
Conclusion:
Therefore, the horizontal position of the ball as a function of
(f)

The overall shape of the graph of the function
Answer to Problem 73AP
In starting condition graph
Explanation of Solution
Given info: The located at the spring cannon is
The graph of
Conclusion:
Therefore, the starting condition graph
Want to see more full solutions like this?
Chapter 4 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- RT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forwardганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





