Concept explainers
(a)
The total flight time of the ball.
(a)
Answer to Problem 56AP
The total fight time of the ball is
Explanation of Solution
The initial velocity is divided into two components that is horizontal and vertical velocity component. At maximum point vertical velocity is zero for this path. The maximum height of the projectile is sixth part of the range.
Write the expression for maximum height of the ball.
Here,
Write the expression for range of the projectile path.
Substitute
Here,
Multiply equation (II) by
Multiply and divide by
The maximum height is one-sixth of range.
Substitute
Simplify the above equation.
Substitute
Simplify and rearrange the above equation as.
At peak point of the projectile path velocity along vertical direction is zero.
Write the expression for final velocity along vertical.
Here,
Initial velocity along vertical is zero.
Substitute
Rearrange the above equation.
The final velocity along vertical is
Substitute
Rearrange the above equation time to reach the peak of the path.
Here,
Substitute
Rearrange the above equation.
Write the expression for the total time of the ball’s flight.
Conclusion:
Substitute
Thus, the total flight time of the ball is
(b)
The speed of the ball at peak point.
(b)
Answer to Problem 56AP
The peak velocity at top point is
Explanation of Solution
At the peak point velocity along vertical is zero and the ball starts to accelerate under gravity in downward direction.
Write the expression for velocity at peak point.
Here,
Conclusion:
Substitute
Thus, the peak velocity at top point is
(c)
The initial vertical component of velocity.
(c)
Answer to Problem 56AP
The initial vertical component is
Explanation of Solution
Write the expression for initial vertical component of velocity.
Here,
Conclusion:
Substitute
Thus, the initial vertical component of velocity is
(d)
The initial speed of the ball.
(d)
Answer to Problem 56AP
The initial speed of the ball is
Explanation of Solution
The initial speed of the ball is given by the square root of the sum of square of horizontal and vertical velocity component.
Write the expression for initial velocity along horizontal.
Here,
Write the expression for initial velocity along vertical.
Here,
Write the expression for the initial speed of ball.
Here,
Conclusion:
Substitute
Substitute
Simplify and solve the above equation.
Thus, the initial speed of the ball is
(e)
The initial angle of the projectile.
(e)
Answer to Problem 56AP
The initial angle of projectile is
Explanation of Solution
The angle of the projectile can be given by the ratio of vertical velocity to the horizontal velocity.
Write the expression for initial angle of projectile as.
Substitute
Here,
Conclusion:
Substitute
Thus, the initial projection angle is
(f)
The greatest height with same initial speed.
(f)
Answer to Problem 56AP
The greatest height at same initial speed is
Explanation of Solution
The maximum height can be achieved by the ball at
Conclusion:
Substitute
Thus, the greatest height at same initial speed is
(g)
The maximum horizontal range.
(g)
Answer to Problem 56AP
The maximum horizontal range is
Explanation of Solution
The maximum horizontal range can be achieved at
Write the expression for maximum range as.
Here,
Conclusion:
Substitute
Thus, the maximum horizontal range is
Want to see more full solutions like this?
Chapter 4 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forwardNo chatgpt pls will upvotearrow_forward
- 14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forwardNo chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forward
- Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forwardWhat is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning