Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 8P

It is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope, however, can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The “lenses” of an electron microscope consist of electric and magnetic fields that control the electron beam. As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity v i = v i i ^ . As it passes through the region x = 0 to x = d, the electron experiences acceleration a ( t ) = a x i ^ + a y j ^ , where ax and ay are constants. For the case vi = 1.80 × 107 m/s, ax = 8.00 × 1014 m/s2, and ay = 1.60 × 1015 m/s2 determine at x = d = 0.010 0 m (a) the position of the electron, (b) the velocity of the electron, (c) the speed of the electron, and (d) the direction of travel of the electron (i.e., the angle between its velocity and the x axis).

(a)

Expert Solution
Check Mark
To determine

The position of the electron.

Answer to Problem 8P

The position of the electron is (0.010m)i^+(2.4×104 m)j^ .

Explanation of Solution

Section 1:

To determine: The time taken by the electron to pass the region.

Answer: The time taken by the electron to pass the region is 5.48×1010 s .

Given information:

The x component of velocity is 1.80×107 m/s , the x component of the acceleration is 8.00×1014 m/s2 , the y component of acceleration is 1.60×1015 m/s2 and the final distance is 0.0100 m .

The equation for the x component of the motion is,

xf=xi+vxt+12axt2

  • xf is the final distance.
  • xi is the initial distance.
  • vx is the x component of velocity.
  • ax is the x component of acceleration.

Substitute 0.0100 m for xf , 0 for xi , 1.80×107 m/s for vx and 8.00×1014 m/s2 for ax in above equation.

(0.0100 m)=[0+(1.80×107 m/s)t+12(8.00×1014 m/s2)t2](4.00×1014 m/s2)t2+(1.80×107 m/s)t0.01 m=0t=5.48×1010 s

Section 2:

To determine: The position of the electron.

Answer: The position of the electron is (0.010m)i^+(2.4×104 m)j^ .

Given information:

The x component of velocity is 1.80×107 m/s , the x component of the acceleration is 8.00×1014 m/s2 , the y component of acceleration is 1.60×1015 m/s2 and the final distance is 0.0100 m .

The equation for the y component of the motion is,

yf=yi+vyt+12ayt2

  • yf is the final distance.
  • yi is the initial distance.
  • vy is the y component of velocity.
  • ay is the y component of acceleration.

Substitute 0 for yi , 0 for vy , 5.48×1010 s for t and 1.60×1015 m/s2 for ay in above equation to find yf .

yf=0+(0)(5.48×1010 s)+12(1.60×1015 m/s2)(5.48×1010 s)2=12(1.60×1015 m/s2)(5.48×1010 s)2=2.4×104 m

Thus, the position of electron is,

r=(0.010m)i^+(2.4×104 m)j^

Conclusion:

Therefore, the position of the electron is (0.010m)i^+(2.4×104 m)j^ .

(b)

Expert Solution
Check Mark
To determine

The velocity of the electron.

Answer to Problem 8P

The velocity of the electron is (1.8×107 m/s2)i^+(8.76×105 m/s)j^ .

Explanation of Solution

Given information:

The x component of velocity is 1.80×107 m/s , the x component of the acceleration is 8.00×1014 m/s2 , the y component of acceleration is 1.60×1015 m/s2 and the final distance is 0.0100 m .

The formula to calculate velocity is,

vf=vi+at=(vx+axt)i^+((vy+ayt))j^

Substitute 1.80×107 m/s for vx , 0 for vy , 8.00×1014 m/s2 for ax , 5.48×1010 s for t and 1.60×1015 m/s2 for ay in above equation to find vf .

vf=[(1.80×107 m/s+(8.00×1014 m/s2)(5.48×1010 s))i^+(0+(1.60×1015 m/s2)(5.48×1010 s))j^]=(1.8×107 m/s2)i^+(8.76×105 m/s)j^

Conclusion:

Therefore, the velocity of the electron is (1.8×107 m/s2)i^+(8.76×105 m/s)j^ .

(c)

Expert Solution
Check Mark
To determine

The speed of the electron.

Answer to Problem 8P

The speed of the electron is 1.8×107 m/s .

Explanation of Solution

Given information:

The x component of velocity is 1.80×107 m/s , the x component of the acceleration is 8.00×1014 m/s2 , the y component of acceleration is 1.60×1015 m/s2 and the final distance is 0.0100 m .

The formula to calculate speed is,

v=|v|=vx2+vy2

Substitute (1.8×107 m/s2) for vx and (8.76×105 m/s) for vy to find the v .

v=(1.8×107 m/s2)2+(8.76×105 m/s)2=1.8×107 m/s

Conclusion:

Therefore, the speed of the electron is 1.8×107 m/s .

(d)

Expert Solution
Check Mark
To determine

The direction of travel of the electron.

Answer to Problem 8P

The direction of travel of the electron is 2.78° from x axis.

Explanation of Solution

Given information:

The x component of velocity is 1.80×107 m/s , the x component of the acceleration is 8.00×1014 m/s2 , the y component of acceleration is 1.60×1015 m/s2 and the final distance is 0.0100 m .

The formula to calculate direction of travel is,

θ=tan1(vyfvxf)

Substitute 1.8×107 m/s2 for vxf and (8.76×105 m/s) for vyf to find the direction.

θ=tan1(8.76×105 m/s1.8×107 m/s2)=2.78°

Conclusion:

Therefore, the direction of travel of the electron is 2.78° from x axis.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote I
No chatgpt pls will upvote I
How would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?

Chapter 4 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 4 - An astronaut hits a golf ball on the Moon. Which...Ch. 4 - Prob. 7OQCh. 4 - Prob. 8OQCh. 4 - A sailor drops a wrench from the top of a...Ch. 4 - A baseball is thrown from the outfield toward the...Ch. 4 - A set of keys on the end of a string is swung...Ch. 4 - A rubber stopper on the end of a string is swung...Ch. 4 - Prob. 13OQCh. 4 - A spacecraft drifts through space at a constant...Ch. 4 - Prob. 2CQCh. 4 - Prob. 3CQCh. 4 - Describe how a driver can steer a car traveling at...Ch. 4 - A projectile is launched at some angle to the...Ch. 4 - Construct motion diagrams showing the velocity and...Ch. 4 - Explain whether or not the following particles...Ch. 4 - Prob. 1PCh. 4 - When the Sun is directly overhead, a hawk dives...Ch. 4 - Suppose the position vector for a particle is...Ch. 4 - The coordinates of an object moving in the xy...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - The vector position of a particle varies in time...Ch. 4 - It is not possible to see very small objects, such...Ch. 4 - Prob. 9PCh. 4 - Review. A snowmobile is originally at the point...Ch. 4 - Mayan kings and many school sports teams are named...Ch. 4 - Prob. 12PCh. 4 - In a local bar, a customer slides an empty beer...Ch. 4 - Prob. 14PCh. 4 - A projectile is fired in such a way that its...Ch. 4 - Prob. 16PCh. 4 - Chinook salmon are able to move through water...Ch. 4 - Prob. 18PCh. 4 - The speed of a projectile when it reaches its...Ch. 4 - Prob. 20PCh. 4 - A firefighter, a distance d from a burning...Ch. 4 - Prob. 22PCh. 4 - A placekicker must kick a football from a point...Ch. 4 - A basketball star covers 2.80 m horizontally in a...Ch. 4 - A playground is on the flat roof of a city school,...Ch. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - A student stands at the edge of a cliff and throws...Ch. 4 - Prob. 30PCh. 4 - A boy stands on a diving board and tosses a stone...Ch. 4 - A home run is hit in such a way that the baseball...Ch. 4 - The athlete shown in Figure P4.21 rotates a...Ch. 4 - In Example 4.6, we found the centripetal...Ch. 4 - Prob. 35PCh. 4 - A tire 0.500 m in radius rotates at a constant...Ch. 4 - Review. The 20-g centrifuge at NASAs Ames Research...Ch. 4 - An athlete swings a ball, connected to the end of...Ch. 4 - The astronaut orbiting the Earth in Figure P4.19...Ch. 4 - Figure P4.40 represents the total acceleration of...Ch. 4 - Prob. 41PCh. 4 - A ball swings counterclockwise in a vertical...Ch. 4 - (a) Can a particle moving with instantaneous speed...Ch. 4 - The pilot of an airplane notes that the compass...Ch. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - A police car traveling at 95.0 km/h is traveling...Ch. 4 - A car travels due east with a speed of 50.0 km/h....Ch. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - A river flows with a steady speed v. A student...Ch. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - A farm truck moves due east with a constant...Ch. 4 - A ball on the end of a string is whirled around in...Ch. 4 - Prob. 56APCh. 4 - Prob. 57APCh. 4 - A particle starts from the origin with velocity...Ch. 4 - Prob. 59APCh. 4 - Prob. 60APCh. 4 - Lisa in her Lamborghini accelerates at...Ch. 4 - A boy throws a stone horizontally from the top of...Ch. 4 - Prob. 63APCh. 4 - Prob. 64APCh. 4 - Prob. 65APCh. 4 - Prob. 66APCh. 4 - Why is the following situation impossible? Albert...Ch. 4 - As some molten metal splashes, one droplet flies...Ch. 4 - Prob. 69APCh. 4 - A pendulum with a cord of length r = 1.00 m swings...Ch. 4 - Prob. 71APCh. 4 - A projectile is launched from the point (x = 0, y...Ch. 4 - A spring cannon is located at the edge of a table...Ch. 4 - An outfielder throws a baseball to his catcher in...Ch. 4 - A World War II bomber flies horizontally over...Ch. 4 - Prob. 76APCh. 4 - Prob. 77APCh. 4 - Prob. 78APCh. 4 - A fisherman sets out upstream on a river. His...Ch. 4 - Prob. 80APCh. 4 - A skier leaves the ramp of a ski jump with a...Ch. 4 - Two swimmers, Chris and Sarah, start together at...Ch. 4 - Prob. 83CPCh. 4 - Prob. 84CPCh. 4 - Prob. 85CPCh. 4 - A projectile is fired up an incline (incline angle...Ch. 4 - A fireworks rocket explodes at height h, the peak...Ch. 4 - In the What If? section of Example 4.5, it was...Ch. 4 - Prob. 89CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY