Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 6CQ
(a)
To determine
The force exerted by the air inside and outside the balloon on the section of the rubber.
(b)
To determine
The motion of balloon in terms of acting forces on the rubber when it is set free.
(c)
To determine
The motion of a skyrocket taking off from its launch pad.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
On a perfect fall day, you are hovering at rest at low altitude in a hot-air balloon. The total weight of the balloon, including its load and the hot air in it, is 18000 N
Find the volume of the displaced air
V =
An 0.90-m-diameter, 1.1-m-high garbage can is found in the morning tipped over due to high winds during the night. Assuming the average density of the garbage inside to be 150 kg/m3 and taking the air density to be 1.25 kg/m3, estimate the wind velocity during the night when the can was tipped over. Take the drag coefficient of the can to be 0.7.
d) Figure Q1(d) shows streamlines representing the flow of air over the wing of a plane. Which
of the eight vectors A-H most accurately represents the resultant force on the wing due to
the air flow over it? You do not have to justify your choice.
c↑
D1
B
E
A
H
Figure Q1(d): Air flows over the wing of a plane.
Chapter 4 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 4.1 - Which of the following statements is most correct?...Ch. 4.4 - An object experiences no acceleration. Which of...Ch. 4.4 - You push an object, initially at rest, across a...Ch. 4.5 - Prob. 4.4QQCh. 4.6 - (i) If a fly collides with the windshield of a...Ch. 4.6 - Which of the following is the reaction force to...Ch. 4.7 - Consider the two situations shown in Figure 4.8,...Ch. 4 - Prob. 1OQCh. 4 - Prob. 2OQCh. 4 - Prob. 3OQ
Ch. 4 - Prob. 4OQCh. 4 - Prob. 5OQCh. 4 - Prob. 6OQCh. 4 - Prob. 1CQCh. 4 - If a car is traveling due westward with a constant...Ch. 4 - A person holds a ball in her hand. (a) Identify...Ch. 4 - Prob. 4CQCh. 4 - If you hold a horizontal metal bar several...Ch. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Balancing carefully, three boys inch out onto a...Ch. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Give reasons for the answers to each of the...Ch. 4 - Prob. 15CQCh. 4 - In Figure CQ4.16, the light, taut, unstretchable...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - A force F applied to an object of mass m1 produces...Ch. 4 - (a) A car with a mass of 850 kg is moving to the...Ch. 4 - A toy rocket engine is securely fastened to a...Ch. 4 - Two forces, F1=(6i4j)N and F2=(3i+7j)N, act on a...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 4 - A 3.00-kg object is moving in a plane, with its x...Ch. 4 - A woman weighs 120 lb. Determine (a) her weight in...Ch. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - You stand on the seat of a chair and then hop off....Ch. 4 - Prob. 17PCh. 4 - A block slides down a frictionless plane having an...Ch. 4 - Prob. 19PCh. 4 - A setup similar to the one shown in Figure P4.20...Ch. 4 - Prob. 21PCh. 4 - The systems shown in Figure P4.22 are in...Ch. 4 - A bag of cement weighing 325 N hangs in...Ch. 4 - Prob. 24PCh. 4 - In Example 4.6, we investigated the apparent...Ch. 4 - Figure P4.26 shows loads hanging from the ceiling...Ch. 4 - Prob. 27PCh. 4 - An object of mass m1 = 5.00 kg placed on a...Ch. 4 - An object of mass m = 1.00 kg is observed to have...Ch. 4 - Two objects are connected by a light string that...Ch. 4 - Prob. 31PCh. 4 - A car is stuck in the mud. A tow truck pulls on...Ch. 4 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 4 - Two blocks, each of mass m, are hung from the...Ch. 4 - In Figure P4.35, the man and the platform together...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Prob. 39PCh. 4 - An object of mass m1 hangs from a string that...Ch. 4 - A young woman buys an inexpensive used car for...Ch. 4 - A 1 000-kg car is pulling a 300-kg trailer....Ch. 4 - An object of mass M is held in place by an applied...Ch. 4 - Prob. 44PCh. 4 - An inventive child named Nick wants to reach an...Ch. 4 - In the situation described in Problem 45 and...Ch. 4 - Two blocks of mass 3.50 kg and 8.00 kg are...Ch. 4 - Prob. 48PCh. 4 - In Example 4.5, we pushed on two blocks on a...Ch. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Review. A block of mass m = 2.00 kg is released...Ch. 4 - A student is asked to measure the acceleration of...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - A car accelerates down a hill (Fig. P4.57), going...Ch. 4 - Prob. 58PCh. 4 - In Figure P4.53, the incline has mass M and is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- While workers spray paint the ceiling of a room, numerous small paint aerosols are dispersed into the air. Eventually, these particles will settle out and fall to the floor or other surfaces. Consider small spherical paint particles of diameter D = 10 μm and specific gravity of 1.2. Determine the time it would take this particle to fall 2.4 m from near the ceiling to the floor. Assume that the air within the room is motionless.arrow_forwardLike friction, drag force opposes the motion of a particle in a fluid; however, drag force depends on the particle's velocity. Find the expression for the particle's velocity v(x) as a function of position at any point x in a fluid whose drag force is expressed as Fdrag = kmv where k is a constant, m is the mass of the particle and v is its velocity. Assume that the particle is constrained to move in the x-axis only with an initial velocity v0. Solution: The net force along the x-axis is: ΣF = -F = m then: -mv = m Since acceleration is the first time derivative of velocity a = dv/dt, -mv = m We can eliminate time dt by expressing, the velocity on the left side of the equation as v = dx/dt. Manipulating the variables and simplifying, we arrive at the following expression / = -k "Isolating" the infinitesimal velocity dx and integrating with respect to dx, we arrive at the following: = v0 - which shows that velocity decreases in a linear manner.arrow_forwardA child playing in a swimming pool realizes that it is easy to push a small inflated ball under the surface of the water whereas a large ball requires a lot of force. The child happens to have a styrofoam ball (the shape of the ball will not distort when it is forced under the surface), which he forces under the surface of the water. If the child needs to supply 5.00 x 102 N to totally 1.000 x 103 kg/m³, the density of styrofoam submerge the ball, calculate the diameter d of the ball. The density of water is Pw = is Pfoam 95.0 kg/m', and the acceleration due to gravity is g 9.81 m/s?. d =arrow_forward
- Unfortunately, one person got infected by V. vulnificus after eating some oysters. We want to estimate how much power a bacteria needs in order to move inside a capillary. The Reynolds number in a capillary is about 0.001, which means that blood's flow in a capillary is well approximated by Stokes flow model. In the following questions, assume that the bacteria is a sphere with an effective radius 0.55 μm (although the shape of V. vulnificus is more like a comma) moving at a speed of 200.0 μm/s relative to the blood flow. For simplicity, the dynamical viscosity, µ, is set to 0.030 kg/m/s3. Give the result consistent with the significant digits in the data. That is, with two significant digits. (a) Find the drag force that the bacteria experiences in the capillary. (b) Find the power that the bacteria needs to produce in order to move at that speed with respect to the blood flow. Hint: remember that power can be written as P = Fv. (c) Assuming that a mole of glucose can produce 380 kcal…arrow_forwardA glass ball of radius 1.65 cm sits at the bottom of a container of milk that has a density of 1.03 g/cm3. The normal force on the ball from the container's lower surface has magnitude 8.03 × 10-2 N. What is the mass of the ball?arrow_forwardIn this example, we are going to take a look at a different type of friction, one that is not described by equations for static-friction force and kinetic-friction force. When an object moves through a fluid (such as water or air), it exerts a force on the fluid to push it out of the way. By Newton's third law, the fluid pushes back on the object, in a direction opposite to the object's velocity relative to the fluid, always opposing the object's motion and usually increasing with speed. In high-speed motion through air, the resisting force is approximately proportional to the square of the object's speed v; it's called a drag force, or simply drag. We can represent its magnitude FD by FD=Dv2, where D is a proportionality constant that depends on the shape and size of the object and the density of air. When an object falls vertically through air, the drag force opposing the object's motion increases and the downward acceleration decreases. Eventually, the object reaches a terminal…arrow_forward
- Assume a certain liquid, with density 1 300 kg/m3, exerts no friction force on spherical objects. A ball of mass 2.30 kg and radius 8.90 cm is dropped from rest into a deep tank of this liquid from a height of 2.10 m above the surface. (a) Find the speed at which the ball enters the liquid. m/s (b) Evaluate the magnitudes of the two forces that are exerted on the ball as it moves through the liquid. gravitational force buoyant force N (c) Explain why the ball moves down only a limited distance into the liquid. This answer has not been graded yet. Calculate this distance. liquid? (d) With what speed does the ball pop up out of m/s (e) How does the time interval Atun during which the ball moves from the surface down to its lowest point, compare with the time interval At., for the return trip between the same two points? O The down interval is greater. O The up interval is greater. O The two intervals are equal. (f) Now modify the model to suppose the liquid exerts a small friction force…arrow_forwardFor the flow of an incompressible viscous fluid and an axial flow in cylindrical pipe v = v(p)ê,, one side of the Navier-Stokes equation gives v:(7 x v) = 0. Show that the displayed equation, i.e. V²(V × v) = 0, leads to the differential equation 1 d d?v° 1 dv = 0. p dp dp2 p² dparrow_forwardIf a bubble in sparkling water accelerates upward at the rate of 0.225 m/s2 and has a radius of 0.500 mm, what is its mass? Assume that the drag force on the bubble is negligible.arrow_forward
- A flat roof is very susceptible to wind damage during a thunderstorm and/or tornado. If a flat roof has an area of 520 m2 and winds of speed 43.0 m/s blow across it, determine the magnitude of the force exerted on the roof. The density of air is 1.29 kg/m3.arrow_forwardA spherical balloon with imprint to be visualized as a dog is prevented from floating upward by a rope, whereby it is tied to the ground. The actual balloon inclusive of the gas inside of it has a total mass of 9.20 kg. The balloon's density is 1.45 cubic meter per kg and its diameter is approximately 3.97 meters. What is the tension felt by the rope? (Take note that the rope is fully vertical.)arrow_forwardAn Airbus A380-800 passanger airplane is cruising at constant altitude on a straight line with a constant speed. The total surface area of the two wings_is 395 m². The average speed of the air just below the wings is 246 m/s, and it is 272 m/s just above the surface of the wings. What is the mass of the airplane? The average density of the air around the airplane is pair = 1.21 kg/m³. Submit Answer Tries 0/12 Post Discussion Send Feedbackarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY