Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 16P
You stand on the seat of a chair and then hop off. (a) During the time interval you are in flight down to the floor, the Earth moves toward you with an acceleration of what order of magnitude? In your solution, explain your logic. Model the Earth as a perfectly solid object, (b) The Earth moves toward you through a distance of what order of magnitude?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How would I begin to solve this problem?
In Example 2.6, we considered a simple model for a rocket launched from the surface of the Earth. A better expression for a rocket's position measured from the center of the Earth is given by
y(t) = (RE3/2 + 3*(g/2)1/2 REt)2/3
where RE is the radius of the Earth (6.38 ✕ 106 m) and g is the constant acceleration of an object in free fall near the Earth's surface (9.81 m/s2).
(a) Derive expressions for vy(t) and ay(t). (Use the following as necessary: g, RE, and t. Do not substitute numerical values; use variables only.)
Starting from rest, a child throws a ball of mass m with an initial speed v, at an angle B with the horizontal direction. The child
then chases after the ball, accelerating at a constant acceleration a . If the child wants to catch the ball at the same height as it
was thrown, what must be the child's acceleration a ? Express your answer in terms of some or all of the variables v, m, B and
g for the gravitational constant. Express the trigonometric functions in terms of the basic sin(B), cos(B) or tan(B).
Submit You have used 0 of 10 attempts
Save
►
Hi, today I had my engineering mechanics 1 test which I completely screwed up. I was quite confident in the uniform circular motion, but I had this problem in my exam which completely confused me. When I read "upward vertical acceleration" my head just start to spin as I couldn't understand what force could cause an upward acceleration. Could you help me with this problem? I bet it is easier than it looks, but still, I am confused about what is asking me and most importantly about the input it is giving me. I don't have my exam paper with me, but on my body diagram, I knew that on the aeroplane were exerted the Force of Contact Fn1 and the Force m1g in the y opposite direction. On the pilot was acting the Force of Contact with the seat of the aeroplane Fn2 and the m2g in the y opposite direction.
Here is the problem:
During an air show an aircraft comes out of a dive at the bottom of a circular arc at a horizontal speed of 97m/s. In the cockpit the aircraft pilot of mass 58kg…
Chapter 4 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 4.1 - Which of the following statements is most correct?...Ch. 4.4 - An object experiences no acceleration. Which of...Ch. 4.4 - You push an object, initially at rest, across a...Ch. 4.5 - Prob. 4.4QQCh. 4.6 - (i) If a fly collides with the windshield of a...Ch. 4.6 - Which of the following is the reaction force to...Ch. 4.7 - Consider the two situations shown in Figure 4.8,...Ch. 4 - Prob. 1OQCh. 4 - Prob. 2OQCh. 4 - Prob. 3OQ
Ch. 4 - Prob. 4OQCh. 4 - Prob. 5OQCh. 4 - Prob. 6OQCh. 4 - Prob. 1CQCh. 4 - If a car is traveling due westward with a constant...Ch. 4 - A person holds a ball in her hand. (a) Identify...Ch. 4 - Prob. 4CQCh. 4 - If you hold a horizontal metal bar several...Ch. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Balancing carefully, three boys inch out onto a...Ch. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Give reasons for the answers to each of the...Ch. 4 - Prob. 15CQCh. 4 - In Figure CQ4.16, the light, taut, unstretchable...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - A force F applied to an object of mass m1 produces...Ch. 4 - (a) A car with a mass of 850 kg is moving to the...Ch. 4 - A toy rocket engine is securely fastened to a...Ch. 4 - Two forces, F1=(6i4j)N and F2=(3i+7j)N, act on a...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 4 - A 3.00-kg object is moving in a plane, with its x...Ch. 4 - A woman weighs 120 lb. Determine (a) her weight in...Ch. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - You stand on the seat of a chair and then hop off....Ch. 4 - Prob. 17PCh. 4 - A block slides down a frictionless plane having an...Ch. 4 - Prob. 19PCh. 4 - A setup similar to the one shown in Figure P4.20...Ch. 4 - Prob. 21PCh. 4 - The systems shown in Figure P4.22 are in...Ch. 4 - A bag of cement weighing 325 N hangs in...Ch. 4 - Prob. 24PCh. 4 - In Example 4.6, we investigated the apparent...Ch. 4 - Figure P4.26 shows loads hanging from the ceiling...Ch. 4 - Prob. 27PCh. 4 - An object of mass m1 = 5.00 kg placed on a...Ch. 4 - An object of mass m = 1.00 kg is observed to have...Ch. 4 - Two objects are connected by a light string that...Ch. 4 - Prob. 31PCh. 4 - A car is stuck in the mud. A tow truck pulls on...Ch. 4 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 4 - Two blocks, each of mass m, are hung from the...Ch. 4 - In Figure P4.35, the man and the platform together...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Prob. 39PCh. 4 - An object of mass m1 hangs from a string that...Ch. 4 - A young woman buys an inexpensive used car for...Ch. 4 - A 1 000-kg car is pulling a 300-kg trailer....Ch. 4 - An object of mass M is held in place by an applied...Ch. 4 - Prob. 44PCh. 4 - An inventive child named Nick wants to reach an...Ch. 4 - In the situation described in Problem 45 and...Ch. 4 - Two blocks of mass 3.50 kg and 8.00 kg are...Ch. 4 - Prob. 48PCh. 4 - In Example 4.5, we pushed on two blocks on a...Ch. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Review. A block of mass m = 2.00 kg is released...Ch. 4 - A student is asked to measure the acceleration of...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - A car accelerates down a hill (Fig. P4.57), going...Ch. 4 - Prob. 58PCh. 4 - In Figure P4.53, the incline has mass M and is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A simple pendulum (a mass swinging at the end of a string) swings back and forth in a circular arc. What is the direction of the acceleration of the mass when it is at the ends of the swing? At the midpoint? In each case, explain how you obtain your answer.arrow_forwardConsider two-dimensional polar coordinates r(t) and ø(t). de (a) Find e = in terms of er, ep, r, o, †, and ò̟. (b) Find the radial and tangential components of the acceleration. (c) Find the radial and tangential components of the jerk (time derivative of the acceleration).arrow_forwardSuppose that in the future humans can travel to different earth like planets within our galaxy. You take a trip to a new planet with a different gravitational acceleration than earth. To test this gravitational acceleration, you decide to drop a ball a distance of 2 meters. You measure how long it takes the ball to fall 2.0 meter multiple times and take an average. The average drop time is 0.52 seconds. What is the approximate magnitude of the gravitational acceleration of the planet (in units of m/s squared)?arrow_forward
- A bicep muscle shown in Fig. P2.3 can apply a force F measured in Newtons (N) as a function of the elbow angle ϕ, measured in degrees as described by the quadratic equation F(ϕ) = 6ϕ − 0.04ϕ2. For a bicep force of F = 200 N, solve the equation for ϕ by each of the following methods: factoring, completing the square, and the quadratic formula. Using your solution from part (a), determine the elbow angle ϕ where the force exerted by the bicep is maximum. In addition, calculate the maximum force Fmax. Plot F versus ϕ and clearly indicate the maximum force on the graph. Also clearly label the x-intercepts on the graph.arrow_forwardYou are lucky enough to visit a particular location in the universe that has zero gravity and no air resistance, so you decide to perform a simple experiment by throwing a rock horizontally. What type of motion do you observe?arrow_forwardCase 1: A DJ starts up her phonograph player. The turntable accelerates uniformly from rest, and takes t1 = 11.6 seconds to get up to its full speed of f1 = 78 revolutions per minute.Case 2: The DJ then changes the speed of the turntable from f1 = 78 to f2 = 120 revolutions per minute. She notices that the turntable rotates exactly n2= 12 times while accelerating uniformly. t1 = 11.6 secondsn2 = 12 times d. Calculate the magnitude of the angular acceleration of the turntable (in radians/second2) while increasing to 120 RPM (Case 2). e. How long (in seconds) does it take for the turntable to go from f1 = 78 to f2 = 120 RPM?arrow_forward
- Case 1: A DJ starts up her phonograph player. The turntable accelerates uniformly from rest, and takes t1 = 11.6 seconds to get up to its full speed of f1 = 78 revolutions per minute. Case 2: The DJ then changes the speed of the turntable from f1 = 78 to f2 = 120 revolutions per minute. She notices that the turntable rotates exactly n2= 12 times while accelerating uniformly. t1 = 11.6 secondsn2 = 12 times a. Calculate the angular speed described in Case 1, given as f1 = 78 revolutions per minute, into units of radians/second. b. How many revolutions does the turntable make while accelerating in Case 1? c. Calculate the magnitude of the angular acceleration of the turntable in Case 1, in radians/second2. d. Calculate the magnitude of the angular acceleration of the turntable (in radians/second2) while increasing to 120 RPM (Case 2). e. How long (in seconds) does it take for the turntable to go from f1 = 78 to f2 = 120 RPM?arrow_forwardA bowling ball weighing 71.2 N is attached to the ceiling by a 3.50 m rope. The ball is pulled to one side and released; it then swings back and forth like a pendulum. As the rope swings through its lowest point, the speed of the bowling ball is measured at 4.80 m/s. A) At that instant, find the magnitude of the acceleration of the bowling ball. Express your answer with the appropriate units. B) At that instant, find the tension in the rope. Express your answer with the appropriate units.arrow_forwardA planet has a mass equals to the mass of Earth and a radius 1.2 times the radius of Earth. What is the magnitude of the acceleration of a body falling near the surface of this plant in m/s2 ? Give your answer to three significant figures.arrow_forward
- Two bugs, Buzz and Crunchy, are siting on a spinning disk on a horizontal plane. Buzz is sitting halfway and Crunchy is sitting at the outer edge as shown. The radius of the disk is 0.80 m and the disk is rotating with an angular speed of 38 rpm. The coefficient of friction between the bugs and the disk are us = 0.80 and uk= 0.60. What is the magnitude of Buzz's acceleration, in m/s2? Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement. Buzz Crunchyarrow_forwardHelp me please how can I solve this question?arrow_forwardA 2.50 kg wooden block is tied to a rope and spun in a circular path of radius 1.08 m. The block obtains a maximum speed of 10.0 m/s. What is the magnitude of the maximum radial acceleration (in m/s2) of the block?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY