Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 15P
(a)
To determine
The average acceleration of the molecule.
(b)
To determine
The average force exerted by molecule on the wall.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The average speed of a nitrogen molecule in air is about 6.7 x 10^2 m/s, and its mass is 4.68 x 10^-26 kg. (a) If it takes 3.00 x 10^-13 s for a nitrogen molecule to hit a wall opposite direction, what is the average acceleration of the molecule during this time interval? (b) What average force does the molecule exert on the wall?
The average speed of a nitrogen molecule in air is about 6.70×102 m/s, and its mass is 4.68×10-26 kg.
(a) If it takes 3.00×10-13 s for a nitrogen molecule to hit a wall and rebound with the same speed but moving in the opposite direction, what is the average acceleration of the molecule during this time interval?
(b) What average force does the molecule exert on the wall?
(c) What is the total force exerted on the wall if it is struck by 1015 such molecules all at once?
The average speed of a nitrogen molecule in air is about 686 m/s, and its mass is 4.85 x10-26 kg. If it takes 3.78 x 10-13 s for a nitrogen molecule to hit a wall and rebound with the same speed but moving in the opposite direction, what is the magnitude of the average acceleration of the molecule during this time interval?
Chapter 4 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 4.1 - Which of the following statements is most correct?...Ch. 4.4 - An object experiences no acceleration. Which of...Ch. 4.4 - You push an object, initially at rest, across a...Ch. 4.5 - Prob. 4.4QQCh. 4.6 - (i) If a fly collides with the windshield of a...Ch. 4.6 - Which of the following is the reaction force to...Ch. 4.7 - Consider the two situations shown in Figure 4.8,...Ch. 4 - Prob. 1OQCh. 4 - Prob. 2OQCh. 4 - Prob. 3OQ
Ch. 4 - Prob. 4OQCh. 4 - Prob. 5OQCh. 4 - Prob. 6OQCh. 4 - Prob. 1CQCh. 4 - If a car is traveling due westward with a constant...Ch. 4 - A person holds a ball in her hand. (a) Identify...Ch. 4 - Prob. 4CQCh. 4 - If you hold a horizontal metal bar several...Ch. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Balancing carefully, three boys inch out onto a...Ch. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Give reasons for the answers to each of the...Ch. 4 - Prob. 15CQCh. 4 - In Figure CQ4.16, the light, taut, unstretchable...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - A force F applied to an object of mass m1 produces...Ch. 4 - (a) A car with a mass of 850 kg is moving to the...Ch. 4 - A toy rocket engine is securely fastened to a...Ch. 4 - Two forces, F1=(6i4j)N and F2=(3i+7j)N, act on a...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 4 - A 3.00-kg object is moving in a plane, with its x...Ch. 4 - A woman weighs 120 lb. Determine (a) her weight in...Ch. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - You stand on the seat of a chair and then hop off....Ch. 4 - Prob. 17PCh. 4 - A block slides down a frictionless plane having an...Ch. 4 - Prob. 19PCh. 4 - A setup similar to the one shown in Figure P4.20...Ch. 4 - Prob. 21PCh. 4 - The systems shown in Figure P4.22 are in...Ch. 4 - A bag of cement weighing 325 N hangs in...Ch. 4 - Prob. 24PCh. 4 - In Example 4.6, we investigated the apparent...Ch. 4 - Figure P4.26 shows loads hanging from the ceiling...Ch. 4 - Prob. 27PCh. 4 - An object of mass m1 = 5.00 kg placed on a...Ch. 4 - An object of mass m = 1.00 kg is observed to have...Ch. 4 - Two objects are connected by a light string that...Ch. 4 - Prob. 31PCh. 4 - A car is stuck in the mud. A tow truck pulls on...Ch. 4 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 4 - Two blocks, each of mass m, are hung from the...Ch. 4 - In Figure P4.35, the man and the platform together...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Prob. 39PCh. 4 - An object of mass m1 hangs from a string that...Ch. 4 - A young woman buys an inexpensive used car for...Ch. 4 - A 1 000-kg car is pulling a 300-kg trailer....Ch. 4 - An object of mass M is held in place by an applied...Ch. 4 - Prob. 44PCh. 4 - An inventive child named Nick wants to reach an...Ch. 4 - In the situation described in Problem 45 and...Ch. 4 - Two blocks of mass 3.50 kg and 8.00 kg are...Ch. 4 - Prob. 48PCh. 4 - In Example 4.5, we pushed on two blocks on a...Ch. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Review. A block of mass m = 2.00 kg is released...Ch. 4 - A student is asked to measure the acceleration of...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - A car accelerates down a hill (Fig. P4.57), going...Ch. 4 - Prob. 58PCh. 4 - In Figure P4.53, the incline has mass M and is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A freight train consists of two 8.00×104 kg5.60×104 kg engines and 45 cars with average masses of 5.50×104 kg5.50×104 kg. (a) What force must each engine exert backward on the track to accelerate the train at a rate of 4.00×10−2 m/s if the force of friction is 6.20×105 N, assuming the engines exert identical forces? This is not a large frictional force for such a massive system. Rolling friction for trains is small, and consequently trains are very energy-efficient transportation systems. (b) What is the force in the coupling between the 37th and 38th cars (this is the force each exerts on the other), assuming all cars have the same mass and that friction is evenly distributed among all of the cars and engines?arrow_forwardA box of mass 10.2 kg is slid along the floor. The initial speed of the box is 2.5 m/s and it comes to rest after 8.1 m. What was the magnitude of the force of friction acting on the box during this motion? You must enter you answer and include the SI units. (For example: 3.0kg)arrow_forwardA spring is compressed between two blocks, one with a mass of 2 kg and the other with a mass of 3 kg. If the 2 kg block has an average acceleration of 6 m/s^2 when the spring acts on it, what will be the average acceleration of the 3 kg block?arrow_forward
- A car of mass 1.2 103 kg is traveling east at a speed of 24 m/s along a horizontal roadway. When its brakes are applied, the car stops in 5.3 s. What is the average horizontal force exerted on the car while it is braking?arrow_forward6) The average speed of a nitrogen molecule in the air is about 6.70 X 102 m/s, and its mass is 4.68 X 10-26 kg. (a) If it takes 3.00 X 10-13 s for a nitrogen molecule to hit a wall and rebound with the same speed but moving in the opposite direction, what is the average acceleration of the molecule during this time interval? (b) What average force does the molecule exert on the wall?arrow_forwardAn object has a velocity (4.69 m/s)i + (-4.4 m/s)j + (4.73 m/s)k. In a time of 5.5 s its velocity becomes (-2.22 m/s)i + (0.00 m/s)j + (4.73 m/s)k. 1) If the mass of the object is 3.31 kg, what is the magnitude of the net force on the object, in N, during the 5.5 s? Assume the acceleration is constant.arrow_forward
- A mass of m₂ = 50 kg is a fixed distance dw = 6 m to the west and a distance dy = 11 m to the north of a mass, m₁. Mass m₂ exerts a force of magnitude F = 3.2 × 10-8 N on m₁. 1) What is the mass of m₁? m₁ = 345 kg m₁ = 120 kg m₁ = 1510 kg 2.37 x 105 kg m₁ = m₁ = 1160 kgarrow_forwardA 1.5-kg mass has an acceleration of (4.0i ^ − 3.0j ^ ) m/s2. Only two forces act on the mass. If one of the forces is (2.0i ^ − 1.4j ^ ) N, what is the magnitude of the other force?arrow_forwardThe net force on block A equals to 47.4 N, and the mass of block A is 14.5 kg. If at t=0 sec, the block velocity is 0 m/s, what is its velocity in unit of m/s at t=4.8 sec?arrow_forward
- A rock of mass m = 1.9 kg is released from a height of h = 3.2 m into a basin of water. At a time of t = 1.17 s after striking the surface of the water, the rock's velocity has decreased by 50%.What is the magnitude of the average force the rock experiences, in newtons, during the time t? F ave=arrow_forwardThe velocity of an object of mass m= 5.00 kg is giving by v(t) = (3.0m/s3)t2+ (2.00 m/s2)t. The velocity of the object at t = 0 s is equal to vo = 0 m/s. Find the force as a function of time that causes the object to move.arrow_forwardThe force on an object moving through a viscous fluid (like honey) is F = -bv, where v is the speed of the object. What are the SI units of b? O kg/s kg/s² kg/m O kg/m² O kg/m · s O none of thesearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY