Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 39P
(a)
To determine
The descending distance by the mass
(b)
To determine
The velocity of first mass.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I am trying to solve this problem but the equation I came up with dosn't work and I am at a loss with what I might be missing for this so can you please help me?
Activity 1. In Problem No. 2, solve for v, when b.) S = 5.50 m. (Ans. v=3.48 m/s)
Activity 2. The block shown has a velocity va = 25 m/s at A and a velocity vB = 15 m/s
as it passes point B on the incline. Calculate the coefficient of friction u between the
block and the plane if S = 100 m ande = 25°.
(Ans. p=0.69)
S- 100 m
25
A drag chute must be designed to reduce the speed of a 1171 kg dragster from 342 km/hr to 80 km/hr in 4
seconds. Assume that the drag force is proportional to the velocity (kv).
a) What value of the drag coefficient k is needed to accomplish this?
kg · s?
(Leave an exact answer.)
m2
k =
b) How far (in meters) will the dragster travel in the 4-sec interval?
d =
meters. (Round to the nearest meter)
Question Help: O Message instructor
Submit Question
Chapter 4 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 4.1 - Which of the following statements is most correct?...Ch. 4.4 - An object experiences no acceleration. Which of...Ch. 4.4 - You push an object, initially at rest, across a...Ch. 4.5 - Prob. 4.4QQCh. 4.6 - (i) If a fly collides with the windshield of a...Ch. 4.6 - Which of the following is the reaction force to...Ch. 4.7 - Consider the two situations shown in Figure 4.8,...Ch. 4 - Prob. 1OQCh. 4 - Prob. 2OQCh. 4 - Prob. 3OQ
Ch. 4 - Prob. 4OQCh. 4 - Prob. 5OQCh. 4 - Prob. 6OQCh. 4 - Prob. 1CQCh. 4 - If a car is traveling due westward with a constant...Ch. 4 - A person holds a ball in her hand. (a) Identify...Ch. 4 - Prob. 4CQCh. 4 - If you hold a horizontal metal bar several...Ch. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Balancing carefully, three boys inch out onto a...Ch. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Give reasons for the answers to each of the...Ch. 4 - Prob. 15CQCh. 4 - In Figure CQ4.16, the light, taut, unstretchable...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - A force F applied to an object of mass m1 produces...Ch. 4 - (a) A car with a mass of 850 kg is moving to the...Ch. 4 - A toy rocket engine is securely fastened to a...Ch. 4 - Two forces, F1=(6i4j)N and F2=(3i+7j)N, act on a...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 4 - A 3.00-kg object is moving in a plane, with its x...Ch. 4 - A woman weighs 120 lb. Determine (a) her weight in...Ch. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - You stand on the seat of a chair and then hop off....Ch. 4 - Prob. 17PCh. 4 - A block slides down a frictionless plane having an...Ch. 4 - Prob. 19PCh. 4 - A setup similar to the one shown in Figure P4.20...Ch. 4 - Prob. 21PCh. 4 - The systems shown in Figure P4.22 are in...Ch. 4 - A bag of cement weighing 325 N hangs in...Ch. 4 - Prob. 24PCh. 4 - In Example 4.6, we investigated the apparent...Ch. 4 - Figure P4.26 shows loads hanging from the ceiling...Ch. 4 - Prob. 27PCh. 4 - An object of mass m1 = 5.00 kg placed on a...Ch. 4 - An object of mass m = 1.00 kg is observed to have...Ch. 4 - Two objects are connected by a light string that...Ch. 4 - Prob. 31PCh. 4 - A car is stuck in the mud. A tow truck pulls on...Ch. 4 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 4 - Two blocks, each of mass m, are hung from the...Ch. 4 - In Figure P4.35, the man and the platform together...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Prob. 39PCh. 4 - An object of mass m1 hangs from a string that...Ch. 4 - A young woman buys an inexpensive used car for...Ch. 4 - A 1 000-kg car is pulling a 300-kg trailer....Ch. 4 - An object of mass M is held in place by an applied...Ch. 4 - Prob. 44PCh. 4 - An inventive child named Nick wants to reach an...Ch. 4 - In the situation described in Problem 45 and...Ch. 4 - Two blocks of mass 3.50 kg and 8.00 kg are...Ch. 4 - Prob. 48PCh. 4 - In Example 4.5, we pushed on two blocks on a...Ch. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Review. A block of mass m = 2.00 kg is released...Ch. 4 - A student is asked to measure the acceleration of...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - A car accelerates down a hill (Fig. P4.57), going...Ch. 4 - Prob. 58PCh. 4 - In Figure P4.53, the incline has mass M and is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please answer this within 30 mins ! I will upvote !arrow_forwardA child of mass 26 kg , is sliding down a water-slide that has an angle of 32 deg. If the water lubricates the slide to a frictionless surface, and the slide is 9 meters long. What is the child's velocity at the bottom?arrow_forwardA block of mass m1 on a rough, horizontal surface is connected to a second mass m; by a light cord over a light frictionless pulley as shown in the figure. (‘Light’ means that we can neglect the mass of the cord and the mass of the pulley.) A force of magnitude F is applied to the mass my as shown, such that m1 moves to the right. The coefficient of kinetic friction between m1 and the surface is p. Derive a formula for the acceleration of the masses. [Serway 5th ed., pg.135, Fig 5.14]arrow_forward
- FIGURE 1: Wind tunnel experiment to measure how the force of air resistance depends on velocity. A free-falling object such as a bungee jumper is subject to the upward force of air resistance. We assumed that this force was proportional to some power b of velocity as in Fu=CaVb where Fy = the upward force of air resistance [N = kg m/s? ], Ca = drag coefficient (kg/m), and V = velocity [m/s]. An individual is suspended in a wind tunnel and the force measured for various levels of wind velocity. The result might be as listed in Table 1 V (m/s) 10 20 30 40 50 60 Fu (N) 37.9 107.3 197.2 303.6 424.3 557.7 Table 1: Experimental data for force (N) and velocity (m/s) from a wind tunnel experiment. Find least sqaures approximation Fu=CaVb to the data given in Table 1.arrow_forwardYou pull on a crate using a rope as in (Figure 1), except the rope is at an angle of 20.0 ∘∘ above the horizontal. The weight of the crate is 245 NN, and the coefficient of kinetic friction between the crate and the floor is 0.270. What must be the tension in the rope to make the crate move at a constant velocity? Express your answer with the appropriate units.arrow_forwardI need help in this questionarrow_forward
- While a person is walking, his arms swing through approximately a 45 ∘ angle in 0.60 s. As a reasonable approximation, we can assume that the arm moves with constant speed during each swing. A typical arm is 70.0 cm long, measured from the shoulder joint. part A) What is the acceleration of a 1.6 g drop of blood in the fingertips at the bottom of the swing? Express your answer with the appropriate units. Part B) Find the force that the blood vessel must exert on the drop of blood in part A. Express your answer with the appropriate units. part C) What force would the blood vessel exert if the arm were not swinging? Express your answer with the appropriate units.arrow_forwardShown to the right is a block of mass m resting on a frictionless ramp inclined at an angle to the horizontal. The block is held by a spring that is stretched a distance d after the block is attached to it. E k= e wwwwww ▷ A Write an equation for the force constant of the spring in terms of the variables from the problem statement (m, 0, and d). Use g for the gravitational constant.arrow_forwardA box of mass 3.0 kg slides down a rough vertical wall. The gravitational force on the box is 29.4 N . When the box reaches a speed of 2.5 m/s , you start pushing on one edge of the box at a 45∘∘ angle (use degrees in your calculations throughout this problem) with a constant force of magnitude FpFpF_p = 23.0 N , as shown in (Figure 1). There is now a frictional force between the box and the wall of magnitude 13.0 N . How fast is the box sliding 2.6 s after you started pushing on it?arrow_forward
- 2. An air track is set to be perfectly level on a lab table, and the glider (total mass 120 grams) is attached by a string of negligible mass, over a pulley with negligible friction, to a hanging mass of 75 grams. Sketch the system, and include arrows to show all the forces acting on the two objects (glider and hanging mass). (b) Label all the force vectors with their magnitudes. (c) Write an equation for Newton's 2nd Law for each of the two objects. (d) Solve for the acceleration of the glider and the tension in the string.arrow_forwardSCSU physics and astronomy student club has a recently established tradition of pumpkin drop, from the top of Wick Science Building to the "moat" below street level. Although the "experimental data" have not been made public, there have been rumors of the drop took 2.20 seconds, i.e. falling from rest with negligible air drag. Based on the rumor, how tall is the building from the "moat" to the roof? Ignore air drag or any rotation of pumpkins. Hint: You may assume final position to be zero.arrow_forwardA body of mass m Starts down from rest from the top of an inclined plane 20 ft long and 10 ft high. What is its velocity at a point 12 ft from the top?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY