University Physics Volume 1
1st Edition
ISBN: 9781630182137
Author: Samuel J Ling Jeff, Sanny, William Moebs
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 69P
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Curve Fitter
CURVE FITTER
Open
Update Fit
Save
New
Exclusion Rules
Select Validation Data
Polynomial Exponential Logarithmic
Auto
Fourier
Fit
Fit
Duplicate Data
Manual
FILE
DATA
FIT TYPE
FIT
Harmonic Motion X
us
0.45
mi
ce
0.4
0.35
0.3
0.25
0.2
Residuals Plot
Contour Plot
Plot Prediction Bounds None
VISUALIZATION
Colormap Export
PREFERENCES EXPORT
Fit Options
COA Fourier
Equation
Fit Plot
x vs. t
-Harmonic Motion
a0+ a1*cos(x*w) +
b1*sin(x*w)
Number of terms
Center and scale
1
▸ Advanced Options
Read about fit options
Results
Value
Lower
Upper
0.15
a0
0.1586
0.1551
0.1620
a1
0.0163
0.0115
0.0211
0.1
b1
0.0011
-0.0093
0.0115
W
1.0473
0.9880
1.1066
2
8
10
t
12
14
16
18
20
Goodness of Fit
Value
Table of Fits
SSE
0.2671
Fit State Fit name
Data
Harmonic Motion x vs. t
Fit type
fourier1
R-square
0.13345
SSE
DFE
0.26712
296
Adj R-sq
0.12467
RMSE
0.030041
# Coeff
Valic
R-square
0.1335
4
DFE
296.0000
Adj R-sq
0.1247
RMSE
0.0300
What point on the spring or different masses should be the place to measure the displacement of the spring? For instance, should you measure to the bottom of the hanging masses?
Let's assume that the brightness of a field-emission electron gun is given by
β
=
4iB
π² d²α²
a) Assuming a gun brightness of 5x108 A/(cm²sr), if we want to have an electron beam with a
semi-convergence angle of 5 milliradian and a probe current of 1 nA, What will be the
effective source size? (5 points)
b) For the same electron gun, plot the dependence of the probe current on the parameter
(dpa) for α = 2, 5, and 10 milliradian, respectively. Hint: use nm as the unit for the
electron probe size and display the three plots on the same graph. (10 points)
Chapter 4 Solutions
University Physics Volume 1
Ch. 4 - Prob. 4.1CYUCh. 4 - Prob. 4.2CYUCh. 4 - Check Your Understanding A rock is thrown...Ch. 4 - Check Your Understanding If the two golf shots in...Ch. 4 - Check Your Understanding A flywheel has a radius...Ch. 4 - Check Your Understanding A boat heads north in...Ch. 4 - What form does the trajectory of a particle have...Ch. 4 - Give an example of a trajectory in two or three...Ch. 4 - If the instantaneous velocity is zero, what can be...Ch. 4 - If the position function of a particle is a linear...
Ch. 4 - If an object has a constant x -component of the...Ch. 4 - If an object has a constant x -component of...Ch. 4 - Answer the following questions for projectile...Ch. 4 - Answer the following questions for projectile...Ch. 4 - A dime is placed at the edge of a table so it...Ch. 4 - Uniform Circular Motion Can centripetal...Ch. 4 - Can tangential acceleration change the speed of a...Ch. 4 - Dimensions What frame or frames of reference do...Ch. 4 - A basketball player dribbling down the court...Ch. 4 - If someone is riding in the back of a pickup thick...Ch. 4 - The hat of a jogger running at constant velocity...Ch. 4 - A clod of dirt falls from the bed of a moving...Ch. 4 - The coordinates of a particle in a rectangular...Ch. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - A bird files straight northeast a distance of 95.0...Ch. 4 - A cyclist rides 5.0 km due east, then 10.0 km 20...Ch. 4 - New York Rangers defenseman Daniel Girardi stands...Ch. 4 - Prob. 23PCh. 4 - Clay Matthews, a linebacker for the Green Bay...Ch. 4 - The F-35B Lighting II is a short-takeoff and...Ch. 4 - Prob. 26PCh. 4 - A particles acceleration is (4.0i+3.0j)m/s2. At...Ch. 4 - Prob. 28PCh. 4 - The position of a particle for t0 is given by...Ch. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - A Lockheed Martin F-35 II lighting jet takes off...Ch. 4 - Projectile Motion A bullet is shot horizontally...Ch. 4 - A marble rolls off a tabletop 1.0 m high and hits...Ch. 4 - A dart is thrown horizontally at a speed of 10 m/s...Ch. 4 - An airplane flying horizontally with a speed of...Ch. 4 - Suppose the airplane in the preceding problem...Ch. 4 - A fastball pitcher can throw a baseball at a speed...Ch. 4 - A projectile is launched at an angle of 30 and...Ch. 4 - A basketball player shoots toward a basket 6.1 m...Ch. 4 - At a particular instant, a hot air balloon is 100...Ch. 4 - A man on a motorcycle traveling at a uniform speed...Ch. 4 - An athlete can jump a distance of 8.0 m in the...Ch. 4 - The maximum horizontal distance a boy can throw a...Ch. 4 - A rock is thrown off a cliff at an angle of 53...Ch. 4 - Trying to escape his pursuers, a secret agent skis...Ch. 4 - A golfer on a fairway is 70 m away from the green,...Ch. 4 - A projectile is shot at a hill, the base of which...Ch. 4 - An astronaut on Mars kicks a soccer ball at an...Ch. 4 - Mike Powell holds the record for the long jump of...Ch. 4 - MIT’s robot cheetah can jump over obstacles 46 cm...Ch. 4 - Mt. Asama, Japan, is an active volcano. In 2009,...Ch. 4 - Drew Brees of the New Orleans Saints can throw a...Ch. 4 - The Lunar Roving Vehicle used In NASA’s late...Ch. 4 - A soccer goal is 2.44 m high. A player kicks the...Ch. 4 - Olympus Mons on Mars is the largest volcano in the...Ch. 4 - In 1999, Robbie Knievel was the first to jump the...Ch. 4 - You throw a baseball at an initial speed of 15.0...Ch. 4 - Aaron Rodgers throws a football at 20.0 m/s to his...Ch. 4 - A flywheel is rotating at 30 rev/s. What is the...Ch. 4 - A particle travels in a circle of radius 10 m at a...Ch. 4 - Cam Newton of the Carolina Panthers throws a...Ch. 4 - A fairground ride spins its occupants inside a...Ch. 4 - A runner taking part in the 200-m dash must run...Ch. 4 - What is the acceleration of Venus toward the Sun,...Ch. 4 - An experimental jet rocket travels around Earth...Ch. 4 - A fan is rotating at a constant 360.0 rev/min....Ch. 4 - A point located on the second hand of a large...Ch. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Raindrops fall vertically at 43 m/s relative to...Ch. 4 - A seagull can fly at a velocity of 9.00 m/s in...Ch. 4 - A ship sets sail from Rotterdam, heading due north...Ch. 4 - A boat can be rowed at 8.0 km/h in still water....Ch. 4 - A small plane flies at 200 km/h in still air. If...Ch. 4 - A cyclist traveling southeast along a road at 15...Ch. 4 - A river is moving east at 4 m/s. A boat starts...Ch. 4 - A Formula One race car is traveling at 89.0 m/s...Ch. 4 - A particle travels m a circular orbit of radius 10...Ch. 4 - The driver of a car moving at 90.0km/h presses...Ch. 4 - A race car entering the curved part of the track...Ch. 4 - An elephant is located on Earth’s surface at a...Ch. 4 - A proton in a synchrotron is moving in a circle of...Ch. 4 - A propeller blade at rest starts to rotate from...Ch. 4 - A particle is executing circular motion with a...Ch. 4 - A particle’s centripetal acceleration is...Ch. 4 - A rod 3.0 m in length is rotating at 2.0 rev/s...Ch. 4 - Prob. 89APCh. 4 - Prob. 90APCh. 4 - Prob. 91APCh. 4 - A crossbow is aimed horizontally at a target 40 m...Ch. 4 - A long jumper can jump a distance of 8.0 m when he...Ch. 4 - On planet Arcon, the maximum horizontal range of a...Ch. 4 - A mountain biker encounters a jump on a race...Ch. 4 - Which has the greater centripetal acceleration, a...Ch. 4 - A geosynchronous satellite orbits Earth at a...Ch. 4 - Two speedboats are traveling at the same speed...Ch. 4 - World’s Longest Par 3. The tee of the world’s...Ch. 4 - When a field goal kicker kicks a football as hard...Ch. 4 - A truck is traveling east at 80 km/h. At an...
Additional Science Textbook Solutions
Find more solutions based on key concepts
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
33. The first formant of your vocal system can be modeled as the resonance of an open-closed tube, the closed e...
College Physics: A Strategic Approach (3rd Edition)
Although many chimpanzees live in environments with oil palm nuts, members of only a few populations use stones...
Campbell Biology (11th Edition)
Calculate the molarity of each solution. a. 0.127 mol of sucrose in 655 mL of solution b. 0.205 mol of KNo3 in ...
Introductory Chemistry (6th Edition)
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
The following variances were calculated for two traits in a herd of hogs. (a) Calculate broad-sense (H2) and na...
Concepts of Genetics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- i need step by step clear answers with the free body diagram clearlyarrow_forwardNo chatgpt pls will upvotearrow_forwardReview the data in Data Table 1 and examine the standard deviations and 95% Margin of Error calculations from Analysis Questions 3 and 4 for the Acceleration of the 1st Based on this information, explain whether Newton’s Second Law of Motion, Equation 1, was verified for your 1st Angle. Equation: SF=ma Please help with explaining the information I collected from a lab and how it relates to the equation and Newton's Second Law. This will help with additional tables in the lab. Thanks!arrow_forward
- No chatgpt pls will upvote instantarrow_forwardKirchoff's Laws. A circuit contains 3 known resistors, 2 known batteries, and 3 unknown currents as shown. Assume the current flows through the circuit as shown (this is our initial guess, the actual currents may be reverse). Use the sign convention that a potential drop is negative and a potential gain is positive. E₂ = 8V R₁₁ = 50 R₂ = 80 b с w 11 www 12 13 E₁ = 6V R3 = 20 a) Apply Kirchoff's Loop Rule around loop abefa in the clockwise direction starting at point a. (2 pt). b) Apply Kirchoff's Loop Rule around loop bcdeb in the clockwise direction starting at point b. (2 pt). c) Apply Kirchoff's Junction Rule at junction b (1 pt). d) Solve the above 3 equations for the unknown currents I1, 12, and 13 and specify the direction of the current around each loop. (5 pts) I1 = A 12 = A 13 = A Direction of current around loop abef Direction of current around loop bcde (CW or CCW) (CW or CCW)arrow_forwardNo chatgpt pls will upvotearrow_forward
- 4.) The diagram shows the electric field lines of a positively charged conducting sphere of radius R and charge Q. A B Points A and B are located on the same field line. A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere. (a) Explain why the electric potential decreases from A to B. [2] (b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the sphere. R [2] (c(i)) Calculate the electric potential difference between points A and B. [1] (c(ii)) Determine the charge Q of the sphere. [2] (d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields. [1]arrow_forward3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).arrow_forward1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
GCSE Physics - Vector Diagrams and Resultant Forces #43; Author: Cognito;https://www.youtube.com/watch?v=U8z8WFhOQ_Y;License: Standard YouTube License, CC-BY
TeachNext | CBSE Grade 10 | Maths | Heights and Distances; Author: Next Education India;https://www.youtube.com/watch?v=b_qm-1jHUO4;License: Standard Youtube License