University Physics Volume 1
1st Edition
ISBN: 9781630182137
Author: Samuel J Ling Jeff, Sanny, William Moebs
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 18P
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
You are planning on installing a new above-ground swimming pool in your backyard. The pool will be rectangular with dimensions
32.0 m x 10.0 m. It will be filled with fresh water to a depth of 2.20 m. In order to provide the appropriate structural support, you
wish to determine the following.
(a) Determine the force exerted on the bottom of the pool by the water (in N).
(No Response) N
(b) Determine the force exerted on each end of the pool by the water (in N). (Assume the end is the 10.0 m wall.)
(No Response) N
(c) Determine the force exerted on each side of the pool by the water (in N). (Assume the side is the 32.0 m wall.)
(No Response) N
(d) You wish to have swimming parties with your children and grandchildren. At a given time, you might have 23 people with an
average mass of 75.0 kg in the pool. You need to determine if such parties will affect your calculations for the required
strength of materials supporting your pool.
The parties will not affect the required strength since…
The construction of a water pistol is shown in the figure below. The cylinder with cross-sectional area A₁ is filled with water and
when the piston is pushed (by pulling the trigger), water is forced out the tube with cross-sectional area A2. The radius of the
cylinder and tube are, respectively, 1.30 cm and 1.10 mm, and the center of the tube is a height h = 3.00 cm above the center of
the cylinder. (Assume atmospheric pressure is 1.013 × 105 Pa.)
A2
A₁
(a) If the pistol is fired horizontally at a height of 1.30 m, determine the time interval (in s) required for water to travel from
the nozzle to the ground. Neglect air resistance.
(No Response) s
(b) If the desired range of the stream is 7.50 m, with what speed ✓2 (in m/s) must the stream leave the nozzle?
(No Response) m/s
(c) At what speed v₁ (in m/s) must the plunger be moved to achieve the desired range?
(No Response) m/s
(d) What is the pressure (in Pa) at the nozzle?
(No Response) Pa
(e) Find the pressure (in Pa) needed in the…
A high-speed lifting mechanism supports a(n) 700-kg object with a steel cable that is 34.0 m long and 4.00 cm² in cross-sectional
area.
(a) Determine the elongation of the cable. (Enter your answer to at least two decimal places.)
(No Response) mm
(b) By what additional amount does the cable increase in length if the object is accelerated upwards at a rate of 2.5 m/s²?
(No Response) mm
(c) What is the greatest mass that can be accelerated upward at 2.5 m/s² if the stress in the cable is not to exceed the
elastic limit of the cable, which is 2.2 × 108 Pa?
(No Response) kg
Chapter 4 Solutions
University Physics Volume 1
Ch. 4 - Prob. 4.1CYUCh. 4 - Prob. 4.2CYUCh. 4 - Check Your Understanding A rock is thrown...Ch. 4 - Check Your Understanding If the two golf shots in...Ch. 4 - Check Your Understanding A flywheel has a radius...Ch. 4 - Check Your Understanding A boat heads north in...Ch. 4 - What form does the trajectory of a particle have...Ch. 4 - Give an example of a trajectory in two or three...Ch. 4 - If the instantaneous velocity is zero, what can be...Ch. 4 - If the position function of a particle is a linear...
Ch. 4 - If an object has a constant x -component of the...Ch. 4 - If an object has a constant x -component of...Ch. 4 - Answer the following questions for projectile...Ch. 4 - Answer the following questions for projectile...Ch. 4 - A dime is placed at the edge of a table so it...Ch. 4 - Uniform Circular Motion Can centripetal...Ch. 4 - Can tangential acceleration change the speed of a...Ch. 4 - Dimensions What frame or frames of reference do...Ch. 4 - A basketball player dribbling down the court...Ch. 4 - If someone is riding in the back of a pickup thick...Ch. 4 - The hat of a jogger running at constant velocity...Ch. 4 - A clod of dirt falls from the bed of a moving...Ch. 4 - The coordinates of a particle in a rectangular...Ch. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - A bird files straight northeast a distance of 95.0...Ch. 4 - A cyclist rides 5.0 km due east, then 10.0 km 20...Ch. 4 - New York Rangers defenseman Daniel Girardi stands...Ch. 4 - Prob. 23PCh. 4 - Clay Matthews, a linebacker for the Green Bay...Ch. 4 - The F-35B Lighting II is a short-takeoff and...Ch. 4 - Prob. 26PCh. 4 - A particles acceleration is (4.0i+3.0j)m/s2. At...Ch. 4 - Prob. 28PCh. 4 - The position of a particle for t0 is given by...Ch. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - A Lockheed Martin F-35 II lighting jet takes off...Ch. 4 - Projectile Motion A bullet is shot horizontally...Ch. 4 - A marble rolls off a tabletop 1.0 m high and hits...Ch. 4 - A dart is thrown horizontally at a speed of 10 m/s...Ch. 4 - An airplane flying horizontally with a speed of...Ch. 4 - Suppose the airplane in the preceding problem...Ch. 4 - A fastball pitcher can throw a baseball at a speed...Ch. 4 - A projectile is launched at an angle of 30 and...Ch. 4 - A basketball player shoots toward a basket 6.1 m...Ch. 4 - At a particular instant, a hot air balloon is 100...Ch. 4 - A man on a motorcycle traveling at a uniform speed...Ch. 4 - An athlete can jump a distance of 8.0 m in the...Ch. 4 - The maximum horizontal distance a boy can throw a...Ch. 4 - A rock is thrown off a cliff at an angle of 53...Ch. 4 - Trying to escape his pursuers, a secret agent skis...Ch. 4 - A golfer on a fairway is 70 m away from the green,...Ch. 4 - A projectile is shot at a hill, the base of which...Ch. 4 - An astronaut on Mars kicks a soccer ball at an...Ch. 4 - Mike Powell holds the record for the long jump of...Ch. 4 - MIT’s robot cheetah can jump over obstacles 46 cm...Ch. 4 - Mt. Asama, Japan, is an active volcano. In 2009,...Ch. 4 - Drew Brees of the New Orleans Saints can throw a...Ch. 4 - The Lunar Roving Vehicle used In NASA’s late...Ch. 4 - A soccer goal is 2.44 m high. A player kicks the...Ch. 4 - Olympus Mons on Mars is the largest volcano in the...Ch. 4 - In 1999, Robbie Knievel was the first to jump the...Ch. 4 - You throw a baseball at an initial speed of 15.0...Ch. 4 - Aaron Rodgers throws a football at 20.0 m/s to his...Ch. 4 - A flywheel is rotating at 30 rev/s. What is the...Ch. 4 - A particle travels in a circle of radius 10 m at a...Ch. 4 - Cam Newton of the Carolina Panthers throws a...Ch. 4 - A fairground ride spins its occupants inside a...Ch. 4 - A runner taking part in the 200-m dash must run...Ch. 4 - What is the acceleration of Venus toward the Sun,...Ch. 4 - An experimental jet rocket travels around Earth...Ch. 4 - A fan is rotating at a constant 360.0 rev/min....Ch. 4 - A point located on the second hand of a large...Ch. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Raindrops fall vertically at 43 m/s relative to...Ch. 4 - A seagull can fly at a velocity of 9.00 m/s in...Ch. 4 - A ship sets sail from Rotterdam, heading due north...Ch. 4 - A boat can be rowed at 8.0 km/h in still water....Ch. 4 - A small plane flies at 200 km/h in still air. If...Ch. 4 - A cyclist traveling southeast along a road at 15...Ch. 4 - A river is moving east at 4 m/s. A boat starts...Ch. 4 - A Formula One race car is traveling at 89.0 m/s...Ch. 4 - A particle travels m a circular orbit of radius 10...Ch. 4 - The driver of a car moving at 90.0km/h presses...Ch. 4 - A race car entering the curved part of the track...Ch. 4 - An elephant is located on Earth’s surface at a...Ch. 4 - A proton in a synchrotron is moving in a circle of...Ch. 4 - A propeller blade at rest starts to rotate from...Ch. 4 - A particle is executing circular motion with a...Ch. 4 - A particle’s centripetal acceleration is...Ch. 4 - A rod 3.0 m in length is rotating at 2.0 rev/s...Ch. 4 - Prob. 89APCh. 4 - Prob. 90APCh. 4 - Prob. 91APCh. 4 - A crossbow is aimed horizontally at a target 40 m...Ch. 4 - A long jumper can jump a distance of 8.0 m when he...Ch. 4 - On planet Arcon, the maximum horizontal range of a...Ch. 4 - A mountain biker encounters a jump on a race...Ch. 4 - Which has the greater centripetal acceleration, a...Ch. 4 - A geosynchronous satellite orbits Earth at a...Ch. 4 - Two speedboats are traveling at the same speed...Ch. 4 - World’s Longest Par 3. The tee of the world’s...Ch. 4 - When a field goal kicker kicks a football as hard...Ch. 4 - A truck is traveling east at 80 km/h. At an...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Community 1 contains 100 individuals distributed among four species: 5A, 5B, 85C, and 5D Community 2 contains 1...
Campbell Biology in Focus (2nd Edition)
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology (7th Edition)
How do food chains and food webs differ? Which is the more accurate representation of feeding relationships in ...
Biology: Life on Earth (11th Edition)
Contrast the fertility of an allotetraploid with an autotriploid and an autotetraploid.
Concepts of Genetics (12th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Knowledge Booster
Similar questions
- A square metal sheet 2.5 cm on a side and of negligible thickness is attached to a balance and inserted into a container of fluid. The contact angle is found to be zero, as shown in Figure a, and the balance to which the metal sheet is attached reads 0.42 N. A thin veneer of oil is then spread over the sheet, and the contact angle becomes 180°, as shown in Figure b. The balance now reads 0.41 N. What is the surface tension of the fluid? x Your response differs from the correct answer by more than 10%. Double check your calculations. N/m a barrow_forwardA helium-filled balloon (whose envelope has a mass of m₁ = 0.260 kg) is tied to a uniform string of length l = 2.70 m and mass m = 0.050 6 kg. The balloon is spherical with a radius of r = 0.399 m. When released in air of temperature 20°C and density Pair = 1.20 kg/m³, it lifts a length h of string and then remains stationary as shown in the figure below. We wish to find the length of string lifted by the balloon. He (a) When the balloon remains stationary, what is the appropriate analysis model to describe it? Oa particle in equilibrium model a particle under constant acceleration model a particle under constant velocity model the ideal fluid model (b) Write a force equation for the balloon from this model in terms of the buoyant force B, the weight F of the balloon, the weight Fe of the helium, and the weight F of the segment of string of length h. (Use any variable or symbol stated above along with the following as necessary: π. Follow the sign convention that upward is the positive…arrow_forwardAssume that if the shear stress in steel exceeds about 4.00 × 108 N/m², the steel ruptures. (a) Determine the shearing force necessary to shear a steel bolt 1.50 cm in diameter. (No Response) N (b) Determine the shearing force necessary to punch a 1.50-cm-diameter hole in a steel plate 0.650 cm thick. (No Response) Narrow_forward
- = = You are preparing your house for a party with your classmates and friends, and want to set up an impressive light display to entertain them. From your study of fluids, you have come up with the idea based on the water flowing from the tank in the figure. You set up the tank as shown in the figure, filled to a depth h 1.15 m, and sitting on a stand of height { 0.300 m. You punch a hole in the tank at a height of Y1 = 0.102 m above the stand. (Ignore the thickness of the tank in your calculation.) You want to punch a second hole higher on the tank so that the streams of water from the two holes arrive at the same position on the table, in a catch basin at a distance d from the right edge of the stand. A pump will continuously carry water from the catch basin back up to the top of the tank to keep the water level fixed. Then, you will use laser pointers on the left side of the tank to light the two streams of water, which will capture the light (see the section on total internal…arrow_forwardA square metal sheet 2.5 cm on a side and of negligible thickness is attached to a balance and inserted into a container of fluid. The contact angle is found to be zero, as shown in Figure a, and the balance to which the metal sheet is attached reads 0.42 N. A thin veneer of oil is then spread over the sheet, and the contact angle becomes 180°, as shown in Figure b. The balance now reads 0.41 N. What is the surface tension of the fluid? N/m aarrow_forwardSucrose is allowed to diffuse along a 12.0-cm length of tubing filled with water. The tube is 6.1 cm² in cross-sectional area. The diffusion coefficient is equal to 5.0 × 10-10 m²/s, and 8.0 × 10−14 x transported along the tube in 18 s. What is the difference in the concentration levels of sucrose at the two ends of the tube? .00567 kg isarrow_forward
- need help part a and barrow_forwardComplete the table below for spherical mirrors indicate if it is convex or concave. Draw the ray diagrams S1 10 30 S1' -20 20 f 15 -5 Marrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be(F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the scalar product v→F→. Work the problem out symbolically first, then plug in numbers after you've simplified the symbolic expression.arrow_forward
- Need help wity equilibrium qestionarrow_forwardneed answer asap please thanks youarrow_forwardA man slides two boxes up a slope. The two boxes A and B have a mass of 75 kg and 50 kg, respectively. (a) Draw the free body diagram (FBD) of the two crates. (b) Determine the tension in the cable that the man must exert to cause imminent movement from rest of the two boxes. Static friction coefficient USA = 0.25 HSB = 0.35 Kinetic friction coefficient HkA = 0.20 HkB = 0.25 M₁ = 75 kg MB = 50 kg P 35° Figure 3 B 200arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON