The increase in bond strength by the removal of an electron in case of O 2 and the decrease in bond strength by the removal of an electron from N 2 is to be explained. Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the H 2 + molecular ion. The bond order is calculated by difference between the anti-bonding electrons and the bonding electrons by two. This can be stated as, Bond order = [ ( Electrons in bonding orbitals ) − ( Electrons in anti-bonding orbitals ) ] 2 As the bond order increases, the stability also increases. The bond order is directly proportional to the bond energy and inversely proportional to the bond length. To determine: The reason behind the increase in bond strength in case of O 2 and the decrease in the same in case of N 2 on the removal of an electron.
The increase in bond strength by the removal of an electron in case of O 2 and the decrease in bond strength by the removal of an electron from N 2 is to be explained. Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the H 2 + molecular ion. The bond order is calculated by difference between the anti-bonding electrons and the bonding electrons by two. This can be stated as, Bond order = [ ( Electrons in bonding orbitals ) − ( Electrons in anti-bonding orbitals ) ] 2 As the bond order increases, the stability also increases. The bond order is directly proportional to the bond energy and inversely proportional to the bond length. To determine: The reason behind the increase in bond strength in case of O 2 and the decrease in the same in case of N 2 on the removal of an electron.
Solution Summary: The author explains that the increase in the bond order on the removal of an electron is the reason behind the stability of the O_ 2 molecule.
Interpretation: The increase in bond strength by the removal of an electron in case of
O2 and the decrease in bond strength by the removal of an electron from
N2 is to be explained.
Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the
H2+ molecular ion.
The bond order is calculated by difference between the anti-bonding electrons and the bonding electrons by two. This can be stated as,
As the bond order increases, the stability also increases. The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The reason behind the increase in bond strength in case of
O2 and the decrease in the same in case of
N2 on the removal of an electron.
10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation →
depicted below
Use proper curved arrow notation that explicitly illustrates all bonds being broken, and
all bonds formed in the transformation.
Also, be sure to include all lone pairs and formal charges on all atoms involved in the
flow of electrons.
CH3O
II
HA
H
CH3O-H
H
①
Do the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.
NGLISH
b)
Identify the bonds present in the molecule drawn (s) above.
(break)
State the function of the following equipments found in laboratory.
Omka)
a) Gas mask
b) Fire extinguisher
c) Safety glasses
4.
60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w
80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions
(S-32.0.0-16.0)
(3 m
5.
In an experiment, a piece of magnesium ribbon was cleaned with steel w
clean magnesium ribbon was placed in a crucible and completely burnt in oxy
cooling the
product weighed 4.0g
a)
Explain why it is necessary to clean magnesium ribbon.
Masterclass Holiday assignmen
PB 2
Chapter 4 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Quantum Molecular Orbital Theory (PChem Lecture: LCAO and gerade ungerade orbitals); Author: Prof Melko;https://www.youtube.com/watch?v=l59CGEstSGU;License: Standard YouTube License, CC-BY