Concept explainers
(a)
Interpretation:
Bonds formed between H and Br should be classified as polarcovalent or ionic based on the electronegativity of atoms.
Concept Introduction:
The electronegativity of atoms defines the bond characteristics, as the electron distribution of the bond can be predicted by electronegativity. Electronegativity is tendency to pull bond electrons towards an atom. Electronegativity difference between bonded atoms defines the nature of bond as stated in the following table.
Electronegativity difference | Type of bond | Electron distribution in bond. |
0.5 > | Nonpolar | Electrons are equally distributed. |
0.5 -1.9 | Polar covalent | Electrons are unequally distributed between bonded atoms. (more electrons towards more electronegative atom). |
1.9 ≤ | Ionic | Electron has been donated to the more electronegative atom from less electronegative atom. |

Answer to Problem 63P
The bond between H and Br atom is polar covalent.
Explanation of Solution
The electronegativity of H and Br atom is 2.1 and 2.8 respectively. The electronegativity difference will be 0.7.
Since,
Electronegativity difference | Type of bond | Electron distribution in bond. |
0.5 > | Nonpolar | Electrons are equally distributed. |
0.5 -1.9 | Polar covalent | Electrons are unequally distributed between bonded atoms. (more electrons towards more electronegative atom). |
1.9 ≤ | Ionic | Electron has been donated to the more electronegative atom from less electronegative atom. |
Thus, the bond will be polar covalent in nature.
(b)
Interpretation:
Bonds formed between Na and S should be classified as polar covalent or ionic based on the electronegativity of atoms.
Concept Introduction:
The electronegativity of atoms defines the bond characteristics, as the electron distribution of the bond can be predicted by electronegativity. Electronegativity is tendency to pull bond electrons towards an atom. Electronegativity difference between bonded atoms defines the nature of bond as stated in the following table.
Electronegativity difference | Type of bond | Electron distribution in bond. |
0.5 > | Nonpolar | Electrons are equally distributed. |
0.5 -1.9 | Polar covalent | Electrons are unequally distributed between bonded atoms. (more electrons towards more electronegative atom). |
1.9 ≤ | Ionic | Electron has been donated to the more electronegative atom from less electronegative atom. |

Answer to Problem 63P
The bond between Na and S atom is polar covalent.
Explanation of Solution
The electronegativity of Na and S atom is 0.9 and 2.5 respectively. The electronegativity difference will be 1.6.
Since,
Electronegativity difference | Type of bond | Electron distribution in bond. |
0.5 > | Nonpolar | Electrons are equally distributed. |
0.5 -1.9 | Polar covalent | Electrons are unequally distributed between bonded atoms. (more electrons towards more electronegative atom). |
1.9 ≤ | Ionic | Electron has been donated to the more electronegative atom from less electronegative atom. |
Thus, the bond will be polar covalent in nature.
(c)
Interpretation:
Bonds formed between N and C should be classified as polar covalent or ionic based on the electronegativity of atoms.
Concept Introduction:
The electronegativity of atoms defines the bond characteristics, as the electron distribution of the bond can be predicted by electronegativity. Electronegativity is tendency to pull bond electrons towards an atom. Electronegativity difference between bonded atoms defines the nature of bond as stated in the following table.
Electronegativity difference | Type of bond | Electron distribution in bond. |
0.5 > | Nonpolar | Electrons are equally distributed. |
0.5 -1.9 | Polar covalent | Electrons are unequally distributed between bonded atoms. (more electrons towards more electronegative atom). |
1.9 ≤ | Ionic | Electron has been donated to the more electronegative atom from less electronegative atom. |

Answer to Problem 63P
The bond between N and C atom is polar covalent.
Explanation of Solution
The electronegativity of N and C atom is 3.0 and 2.7 respectively. The electronegativity difference will be 0.5.
Since,
Electronegativity difference | Type of bond | Electron distribution in bond. |
0.5 > | Nonpolar | Electrons are equally distributed. |
0.5 -1.9 | Polar covalent | Electrons are unequally distributed between bonded atoms. (more electrons towards more electronegative atom). |
1.9 ≤ | Ionic | Electron has been donated to the more electronegative atom from less electronegative atom. |
Thus, the bond will be polar covalent in nature.
(d)
Interpretation:
Bonds formed between Li and O should be classified as polar covalent or ionic based on the electronegativity of atoms.
Concept Introduction:
The electronegativity of atoms defines the bond characteristics, as the electron distribution of the bond can be predicted by electronegativity. Electronegativity is tendency to pull bond electrons towards an atom. Electronegativity difference between bonded atoms defines the nature of bond as stated in the following table.
Electronegativity difference | Type of bond | Electron distribution in bond. |
0.5 > | Nonpolar | Electrons are equally distributed. |
0.5 -1.9 | Polar covalent | Electrons are unequally distributed between bonded atoms. (more electrons towards more electronegative atom). |
1.9 ≤ | Ionic | Electron has been donated to the more electronegative atom from less electronegative atom. |

Answer to Problem 63P
The bond between Li and O is ionic.
Explanation of Solution
The electronegativity of Li and O atom is 1.0 and 3.5 respectively. The electronegativity difference will be 2.5.
Since,
Electronegativity difference | Type of bond | Electron distribution in bond. |
0.5 > | Nonpolar | Electrons are equally distributed. |
0.5 -1.9 | Polar covalent | Electrons are unequally distributed between bonded atoms. (more electrons towards more electronegative atom). |
1.9 ≤ | Ionic | Electron has been donated to the more electronegative atom from less electronegative atom. |
Thus, the bond will be ionic in nature.
Want to see more full solutions like this?
Chapter 4 Solutions
GENERAL,ORGANIC, & BIOLOGICAL CHEM-ACCES
- Polymers may be composed of thousands of monomers. draw two repeat units(dimer) of the polymer formed in this reaction. assume there are hydrogen atoms on the two ends of the dimer. ignore inorganic byproducts pleasearrow_forwardDraw the product of the reaction shown below. Use a dash or wedge bond to indicate stereochemistry of substituents on asymmetric centers, Ignore inorganic byproductsarrow_forwardDraw the product of this reaction please. Ignore inorganic byproductsarrow_forward
- One of the pi molecular orbitals of 1,3-butadiene (CH2=CHCH=CH2) is shown below. Please identify the number of nodal planes perpendicular to the bonding axisarrow_forwardDraw the monomers required to synthesize this condensation polymer please.arrow_forwardProvide the correct systematic name for the compound shown here. Please take into account the keyboard options belowarrow_forward
- curved arrows are used to illustrate the flow of electrons. using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s)arrow_forwardIdentify the 'cartoon' drawing of the acceptor orbital in the first mechanistic step of an electrophilic addition reaction of butadiene with HBr. Pleasearrow_forwardH- H H H H H H Identify and select all structures below that represent a constitutional isomer(s) of the compound shown above. H- H H H A. H H H H-C CI H H D. H H H H H H C C -H H C C H H H H B. H CI H H- C C H H H H E. H CI H C.arrow_forward
- Why doesn't this carry on to form a ring by deprotonating the alpha carbon and the negatively-charged carbon attacking the C=O?arrow_forward6. A solution (0.0004 M) of Fe(S2CNEt2)3 (see the structural drawing below) in chloroform has absorption bands at: 350 nm (absorbance A = 2.34); 514 nm(absorbance A = 0.0532); Calculate the molar absorptivity values for these bands. Comment on their possible nature (charge transfer transitions or d-d S N- transitions?). (4 points)arrow_forwardWhat is the mechanism for this?arrow_forward
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHEROrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning



