Concept explainers
The normalized wave function for a particle in a one-dimensional box in which the potential energy is zero is
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
PRINCIPLES OF MODERN CHEMISTRY-OWLV2
- What is the physical explanation of the difference between a particle having the 3-D rotational wavefunction 3,2 and an identical particle having the wavefunction 3,2?arrow_forward4. Given these operators A=d/dx and B=x², can you measure the expectation values of the corresponding observables to infinite precision simultaneously?arrow_forwardConsider a 1D particle in a box confined between a = 0 and x = 3. The Hamiltonian for the particle inside the box is simply given by Ĥ . Consider the following normalized wavefunction 2m dz² ¥(2) = 35 (x³ – 9x). Find the expectation value for the energy of the particle inside the box. Give your 5832 final answer for the expectation value in units of (NOTE: h, not hbar!). In your work, compare the expectation value to the lowest energy state of the 1D particle in a box and comment on how the expectation value you calculated for the wavefunction ¥(x) is an example of the variational principle.arrow_forward
- What is the kinetic energy of a particle described by the wavefunction cos(kx)? ħ² d² 2m dx² KEarrow_forwardThe wave function for the ground state of the harmonic oscillator is Vo(x) = Ce-[mw/(2ħ)]x² where C is an arbitrary constant, ħ is Planck's constant divided by 2π, m is the mass of the particle, W = ✓k/m, and k is the "spring constant" for the harmonic oscillator. Part A Normalize this wave function. What is the (positive) value of C once this wave function is normalized? You will need the formula Se -∞ Express your answer in terms of w, m, ħ, and T. ► View Available Hint(s) C = 17 ΑΣΦ xa Xh عات a √x vx 18 X> IXI -ax² X.10n X = ? wwwwwwwwww √. aarrow_forwardConsider a single particle with rest mass m residing in a one-dimensional space, x. This particle experiences a potential energy V(x) = ∞ for x a, and a potential energy V(x) = 0 for 0 < x < a. The solutions to the Schrödinger Equation for this system are 12. 2 Vn(x) : sin a where n is the state's quantum number. Show that the ground state wave function is normalized.arrow_forward
- Consider a fictitious one-dimensional system with one electron.The wave function for the electron, drawn below, isψ (x)= sin x from x = 0 to x = 2π. (a) Sketch the probabilitydensity, ψ2(x), from x = 0 to x = 2π. (b) At what value orvalues of x will there be the greatest probability of finding theelectron? (c) What is the probability that the electron willbe found at x = π? What is such a point in a wave functioncalled?arrow_forwardThe normalized wave function for a particle in a one- dimensional box in which the potential energy is zero is (x) = /2/L sin (nTx/L), where L is the length of the box (with the left wall at x = 0). What is the probability that the particle will lie between x = 0 and x = ticle is in its n = 2 state? L/4 if the par-arrow_forwardConsider the three spherical harmonics (a) Y0,0, (b) Y2,–1, and (c) Y3,+3. (a) For each spherical harmonic, substitute the explicit form of the function taken from Table 7F.1 into the left-hand side of eqn 7F.8 (the Schrödinger equation for a particle on a sphere) and confirm that the function is a solution of the equation; give the corresponding eigenvalue (the energy) and show that it agrees with eqn 7F.10. (b) Likewise, show that each spherical harmonic is an eigenfunction of lˆz = (ℏ/i)(d/dϕ) and give the eigenvalue in each case.arrow_forward
- The rotation of a molecule can be represented by the motion of a particle moving over the surface of a sphere with angular momentum quantum number l = 2. Calculate the magnitude of its angular momentum and the possible components of the angular momentum along the z-axis. Express your results as multiples of ℏ.arrow_forwardImagine a particle free to move in the x direction. Which of the following wavefunctions would be acceptable for such a particle? In each case, give your reasons for accepting or rejecting each function. (1) Þ(x) = x²; (iv) y(x) = x 5. (ii) ¥(x) = ; (v) (x) = e-* ; (iii) µ(x) = e-x²; (vi) p(x) = sinxarrow_forwardplease answer #6arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning