Life in the Universe (4th Edition)
4th Edition
ISBN: 9780134089089
Author: Jeffrey O. Bennett, Seth Shostak
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 56IF
Internal vs. External Heating. In daylight, Earth’s surface absorbs about 400 watts per square meter. All of Earth’s internal radioactivity produces a total of 3 trillion watts, which leak out through the surface. Calculate the internal heat flow (watts per square meter) averaged over Earth’s surface. Compare this internal heat flow quantitatively to solar heating, and comment on why internal heating drives geological activity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
CO2 and planetary warming: understanding Earth’s complicated atmosphere Mars has an atmospheric pressure of 6 mbar (compared with Earth atmosphere pressure of 1013 mbar), 96% of which is CO2. The average calculated temperature of Mars is -57°C, whereas the actual average temperature is -55°C so that the amount of warming due to CO2 is only 2°C. On the other hand, the average calculated temperature of Earth, with 0.4 mbar of CO2, is -19°C, whereas the actual average temperature is 15°C so that the amount of warming due to CO2 is 34°C, much greater than that on Mars, which has higher CO2 concentration. Explain how this is possible.
Briefly summarize the evidence linking human activity to global warming.
What are its potential consequences?
Eddies- Describe the many ways that eddies might occur. Understand the distinction between warm-core and cold-core eddies. Learn how eddies contribute to the transfer of water masses and organisms. Understand how eddies may lead to varying patterns of convergence and divergence, which affects ocean production.
Chapter 4 Solutions
Life in the Universe (4th Edition)
Ch. 4 - Briefly describe three aspects of geology that are...Ch. 4 - What do we mean by the geological record? Why is...Ch. 4 - Describe the three basic types of rock and the...Ch. 4 - How are sedimentary strata made, and how do they...Ch. 4 - Describe the technique of radiometric dating, and...Ch. 4 - How do fossils form? Do most living organisms...Ch. 4 - Summarize the geological time scale. What are...Ch. 4 - Prob. 8RQCh. 4 - Briefly describe how outgassing led to the origin...Ch. 4 - What was the heavy bombardment, and what effect...
Ch. 4 - Briefly describe Earths core-mantle-crust...Ch. 4 - Briefly describe the conveyorlike action of plate...Ch. 4 - Describe how plate tectonics shapes important...Ch. 4 - What evidence do we have for the operation of...Ch. 4 - What are the three requirements for a planetary...Ch. 4 - Briefly describe the mechanism by which the...Ch. 4 - What has happened to most of the carbon dioxide...Ch. 4 - What are ice ages, and what may cause them? What...Ch. 4 - Briefly summarize the key ways in which geology is...Ch. 4 - How do we think the Moon formed, and what evidence...Ch. 4 - We can expect that if there are paleontologists a...Ch. 4 - Nearly all the rocks I found in the lava fields of...Ch. 4 - Prob. 23TYUCh. 4 - Although Earth contains its densest material in...Ch. 4 - If you had a time machine that dropped you off on...Ch. 4 - If there were no plate tectonics on Earth, our...Ch. 4 - Without the greenhouse effect, there probably...Ch. 4 - If nitrogen were a greenhouse gas, our planet...Ch. 4 - We can learn a lot about Earths early history by...Ch. 4 - Prob. 30TYUCh. 4 - A rocks type (igneous, metamorphic, or...Ch. 4 - To learn a rocks age, we must (a) determine its...Ch. 4 - Radiometric dating now allows us to determine...Ch. 4 - Earths oceans formed (a) during the late stages of...Ch. 4 - We learn about the heavy bombardment by studying...Ch. 4 - Earth has retained a lot of internal heat...Ch. 4 - Plate tectonics is best described as a process...Ch. 4 - Earth has far less atmospheric carbon dioxide than...Ch. 4 - If Earth had more greenhouse gases in its...Ch. 4 - Snowball Earth refers to (a) one of a series of...Ch. 4 - The Age of Earth. Some people still question...Ch. 4 - Dating Planetary Surfaces. We have discussed two...Ch. 4 - Earth Without Differentiation. Suppose Earth had...Ch. 4 - Earth Without Plate Tectonics. Suppose plate...Ch. 4 - Feedback Processes in the Atmosphere. As the Sun...Ch. 4 - Geological Time. Geological time scales are often...Ch. 4 - Dating Lunar Rocks. You are analyzing Moon rocks...Ch. 4 - Carbon-14 Dating. The half-life of carbon-14 is...Ch. 4 - Martian Meteorite. Some unusual meteorites thought...Ch. 4 - Internal vs. External Heating. In daylight, Earths...Ch. 4 - Plate Tectonics. Typical motions of one plate...Ch. 4 - More Plate Tectonics. Consider a seafloor...Ch. 4 - Plate Tectonics and Us. Based on what you learned...
Additional Science Textbook Solutions
Find more solutions based on key concepts
81. Some bats have specially shaped noses that focus ultrasound echolocation pulses in the forward direction. W...
College Physics: A Strategic Approach (3rd Edition)
65. In Figure 9.17, we see a magnet exerting a force on a current carrying wire. Does a current-carrying wire e...
Conceptual Physical Science (6th Edition)
The specific heat capacity of Albertsons Rotini Tricolore is approximately 1.8J/gC. Suppose you toss 340 g of t...
An Introduction to Thermal Physics
Choose the best answer to each of the following. Explain your reasoning. Kepler made a major break from ancient...
Cosmic Perspective Fundamentals
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
The speed of the person sitting on the chair relative to the chair and relative to Earth.
Conceptual Physics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Activity #1. Compare and Contrast. Similarities and differences of Venus, Earth and Mars. Do this on a separate sheet of paper. 1. Compare and contrast the three (3) terrestrial planets using table 1. 2. Provide explanations for your observations using table 2. 3. Answer the following guide questions. Guide questions: 1. Does planet size affect gravity? 2. Why do you think Venus has the highest mean temperature among the three planets? 3. Is presence of water a primary factor for a planet to sustain life? Why or why not? 4. Based on your observations using table 2, what are the notable features that makes the earth the only habitable planet among the three terrestrial planets? 5. What conclusions can you make?arrow_forwardWhat is convection? What effect does it have on (a) Earth's atmosphere and (b) Earth's interior?arrow_forwardDetail some of the anthropogenic changes to Earth’s climate and their potential impact on life.arrow_forward
- Why are we concerned about the increases in CO2 and other gases that cause the greenhouse effect in Earth’s atmosphere? What steps can we take in the future to reduce the levels of CO2 in our atmosphere? What factors stand in the way of taking the steps you suggest? (You may include technological, economic, and political factors in your answer.)arrow_forwardWhat are Earth’s core and mantle made of? Explain how we know.arrow_forwardWhich of the five Terrestrial worlds have bow shocks, magneto-spheres, and radiation belts? How do you know?arrow_forward
- What does a planet need in order to retain an atmosphere? How does an atmosphere affect the surface of a planet and the ability of life to exist?arrow_forwardCompare the current atmospheres of Earth, Venus, and Mars in terms of composition, thickness (and pressure at the surface), and the greenhouse effect.arrow_forwardLearn about current and planned missions to study a terrestrial planet's atmosphere (including Earth). Write a one-page essay describing the mission and the lessons learned.arrow_forward
- How is a habitable zone likely to change over time? a. get narrower b. move further from the star c. they aren't likely to changearrow_forwardPlease workout the problem on a piece of paper. Equation: PV=nRTarrow_forwardEddies- Explain the different ways that eddies can form. Know the difference betweenwarm- and cold-core eddies. Understand how eddies can result in the transport of watermasses and organisms. Understand how eddies can result in different patterns ofconvergence and divergence, which impacts productivity in the oceans.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY