Concept explainers
(a)
Interpretation:
To predict if a chemical reaction can take place while mixing each of the given set of reagents. If reaction is possible, the balanced molecular equation and net ionic equation has to be found for each reactions.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the
(a)
Answer to Problem 4.99QP
The complete molecular equation
The net ionic equation
Explanation of Solution
The molecular equation for the reaction between
In complete ionic equation the electrolytes are represented as its ions. The complete ionic equation for the reaction is given below. Since,
The ions common in the reactant and the product side are cancelled from the total ionic equation to get net ionic equation.
(b)
Interpretation:
To predict if a chemical reaction can take place while mixing each of the given set of reagents. If reaction is possible, the balanced molecular equation and net ionic equation has to be found for each reactions.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between
(b)
Answer to Problem 4.99QP
The complete molecular equation
The net ionic equation
Explanation of Solution
The complete molecular equation for the reaction between lithium carbonate and nitric acid is given below. The salt formed is a soluble salt.
In complete ionic equation the electrolytes are represented as its ions. The complete ionic equation for the reaction is given below.
The ions common in the reactant and the product side are cancelled from the total ionic equation to get net ionic equation.
(c)
Interpretation:
To predict if a chemical reaction can take place while mixing each of the given set of reagents. If reaction is possible, the balanced molecular equation and net ionic equation has to be found for each reactions.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between
(c)
Answer to Problem 4.99QP
The complete molecular equation
The net ionic equation
Explanation of Solution
The complete molecular equation for the reaction between lithium chloride and silver nitrate is given below.
In complete ionic equation the electrolytes are represented as its ions. The complete ionic equation for the reaction is given below.
The ions common in the reactant and the product side are cancelled from the total ionic equation to get net ionic equation.
(d)
Interpretation:
To predict if a chemical reaction can take place while mixing each of the given set of reagents. If reaction is possible, the balanced molecular equation and net ionic equation has to be found for each reactions.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between
(d)
Answer to Problem 4.99QP
No reaction occurs.
Explanation of Solution
When
Want to see more full solutions like this?
Chapter 4 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
- The table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardMaterials. The following terms are synonyms: tension, effort and stress.arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forward
- Please correct answer and don't used hand raiting and don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardConsider the following Figure 2 and two atoms that are initially an infinite distance apart, x =00, at which point the potential energy of the system is U = 0. If they are brought together to x = x, the potential energy is related to the total force P by dU dx = P Given this, qualitatively sketch the variation of U with x. What happens at x=x? What is the significance of x = x, in terms of the potential energy? 0 P, Force 19 Attraction Total Repulsion x, Distance Figure 2. Variation with distance of the attractive, repulsive, and total forces between atoms. The slope dP/dx at the equilibrium spacing xe is proportional to the elastic modulus E; the stress σb, corresponding to the peak in total force, is the theoretical cohesive strength.arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning