OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
11th Edition
ISBN: 9781305673939
Author: Darrell Ebbing; Steven D. Gammon
Publisher: Cengage Learning US
bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 4.103QP

Describe in words how you would do each of the following preparations. Then give the molecular equation for each preparation.

  1. a CuCl2(s) from CuSO4(s)
  2. b Ca(C2H3O2)2(s) from CaCO3(s)
  3. c NaNO3(s) from Na2SO3(s)
  4. d MgCl2(s) from Mg(OH)2(s)

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Preparations of each of the given compound has to be explained and the molecular equations for each reaction has to be found.

Concept introduction:

A chemical equation is the figurative representation of chemical reaction.  In a chemical equation the reactants are in the left side and the products are in the right side.  A balanced chemical equation serves as an easy tool for understanding a chemical reaction.  There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.

In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase.  The molecular equation for the reaction between Ca(OH)2 and Na2CO3 in solution phase is given below.

Ca(OH)2(aq)+Na2CO3(aq)CaCO3(s)+2NaOH(aq)

This equation is helpful in understanding the reactants and products involved in the reaction.

In complete ionic equations the electrolytes are represented as its ions.  Soluble compounds exist as ions in solution.  Complete ionic equation is helpful in understanding the reaction at ionic level.  The complete ionic equation for the reaction between Ca(OH)2 and Na2CO3 is given below.

Ca2+(aq)+2OH-(aq)+2Na+(aq)+CO32-(aq)CaCO3(s)+2Na+(aq)+2OH-(aq)

The solid CaCO3 is insoluble and it exist as solid in solution.

In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled.  These spectator ions are not participating in the chemical reactions.  The net ionic equation for the reaction between Ca(OH)2 and Na2CO3 is given below.  As hydroxide ions and sodium ions are common in both the side it is neglected from the equation.

Ca2+(aq)+CO32-(aq)CaCO3(s)

Answer to Problem 4.103QP

The molecular equation

CuSO4(aq) + BaCl2(aq)BaSO4(s) + CuCl2(aq)

Explanation of Solution

In order to prepare CuCl2 from CuSO4 we have to take another compound which can exchange its ions with CuSO4 .  Let's take BaCl2 to the beaker containing the solution of CuSO4 .  The compounds will exchange their ions to form BaSO4 and CuCl2 BaSO4 is a solid precipitate and it can be filtered from the reaction mixture. The CuCl2 is prepared in its solid from by evaporation of its solution.

The molecular equation for the reaction is given below.

CuSO4(aq) + BaCl2(aq)BaSO4(s) + CuCl2(aq)

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Preparations of each of the given compound has to be explained and the molecular equations for each reaction has to be found.

Concept introduction:

A chemical equation is the figurative representation of chemical reaction.  In a chemical equation the reactants are in the left side and the products are in the right side.  A balanced chemical equation serves as an easy tool for understanding a chemical reaction.  There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.

In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase.  The molecular equation for the reaction between Ca(OH)2 and Na2CO3 in solution phase is given below.

Ca(OH)2(aq)+Na2CO3(aq)CaCO3(s)+2NaOH(aq)

This equation is helpful in understanding the reactants and products involved in the reaction.

In complete ionic equations the electrolytes are represented as its ions.  Soluble compounds exist as ions in solution.  Complete ionic equation is helpful in understanding the reaction at ionic level.  The complete ionic equation for the reaction between Ca(OH)2 and Na2CO3 is given below.

Ca2+(aq)+2OH-(aq)+2Na+(aq)+CO32-(aq)CaCO3(s)+2Na+(aq)+2OH-(aq)

The solid CaCO3 is insoluble and it exist as solid in solution.

In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled.  These spectator ions are not participating in the chemical reactions.  The net ionic equation for the reaction between Ca(OH)2 and Na2CO3 is given below.  As hydroxide ions and sodium ions are common in both the side it is neglected from the equation.

Ca2+(aq)+CO32-(aq)CaCO3(s)

Answer to Problem 4.103QP

The molecular equation

CaCO3(s) + 2HC2H3O2(aq)Ca(C2H3O2)2(aq) + CO2(g) + H2O(l)

Explanation of Solution

In order to prepare calcium acetate (Ca(C2H3O2)2) from calcium carbonate (CaCO3) we can add acetic acid to the beaker containing CaCO3 .  Along with the desired product, carbon dioxide and water will also be formed.  Ca(C2H3O2)2 in solid form is obtained by the evaporation of the solution.  Evaporation also removes CO2 and water from the reaction mixture.

The molecular equation for the reaction is given below.

CaCO3(s) + 2HC2H3O2(aq)Ca(C2H3O2)2(aq) + CO2(g) + H2O(l)

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Preparations of each of the given compound has to be explained and the molecular equations for each reaction has to be found.

Concept introduction:

A chemical equation is the figurative representation of chemical reaction.  In a chemical equation the reactants are in the left side and the products are in the right side.  A balanced chemical equation serves as an easy tool for understanding a chemical reaction.  There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.

In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase.  The molecular equation for the reaction between Ca(OH)2 and Na2CO3 in solution phase is given below.

Ca(OH)2(aq)+Na2CO3(aq)CaCO3(s)+2NaOH(aq)

This equation is helpful in understanding the reactants and products involved in the reaction.

In complete ionic equations the electrolytes are represented as its ions.  Soluble compounds exist as ions in solution.  Complete ionic equation is helpful in understanding the reaction at ionic level.  The complete ionic equation for the reaction between Ca(OH)2 and Na2CO3 is given below.

Ca2+(aq)+2OH-(aq)+2Na+(aq)+CO32-(aq)CaCO3(s)+2Na+(aq)+2OH-(aq)

The solid CaCO3 is insoluble and it exist as solid in solution.

In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled.  These spectator ions are not participating in the chemical reactions.  The net ionic equation for the reaction between Ca(OH)2 and Na2CO3 is given below.  As hydroxide ions and sodium ions are common in both the side it is neglected from the equation.

Ca2+(aq)+CO32-(aq)CaCO3(s)

Answer to Problem 4.103QP

The molecular equation

Na2SO3(s) + 2HNO3(aq)2NaNO3(aq) + SO2(g) + H2O(l)

Explanation of Solution

In order to prepare NaNO3 from Na2SO3 we can add nitric acid to the beaker containing Na2SO3 .  Along with the desired product, sulphur dioxide and water will also be formed.  NaNO3 in solid form is obtained by the evaporation of the solution.  Evaporation also removes SO2 and water from the reaction mixture.

The molecular equation for the reaction is given below.

Na2SO3(s) + 2HNO3(aq)2NaNO3(aq) + SO2(g) + H2O(l)

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Preparations of each of the given compound has to be explained and the molecular equations for each reaction has to be found.

Concept introduction:

A chemical equation is the figurative representation of chemical reaction.  In a chemical equation the reactants are in the left side and the products are in the right side.  A balanced chemical equation serves as an easy tool for understanding a chemical reaction.  There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.

In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase.  The molecular equation for the reaction between Ca(OH)2 and Na2CO3 in solution phase is given below.

Ca(OH)2(aq)+Na2CO3(aq)CaCO3(s)+2NaOH(aq)

This equation is helpful in understanding the reactants and products involved in the reaction.

In complete ionic equations the electrolytes are represented as its ions.  Soluble compounds exist as ions in solution.  Complete ionic equation is helpful in understanding the reaction at ionic level.  The complete ionic equation for the reaction between Ca(OH)2 and Na2CO3 is given below.

Ca2+(aq)+2OH-(aq)+2Na+(aq)+CO32-(aq)CaCO3(s)+2Na+(aq)+2OH-(aq)

The solid CaCO3 is insoluble and it exist as solid in solution.

In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled.  These spectator ions are not participating in the chemical reactions.  The net ionic equation for the reaction between Ca(OH)2 and Na2CO3 is given below.  As hydroxide ions and sodium ions are common in both the side it is neglected from the equation.

Ca2+(aq)+CO32-(aq)CaCO3(s)

Answer to Problem 4.103QP

The molecular equation

Mg(OH)2(s) + 2HCl(aq)MgCl2(aq) + 2H2O(l)

Explanation of Solution

In order to prepare MgCl2 from Mg(OH)2 , we can add hydrochloric acid to the beaker containing Mg(OH)2 .  Along with the desired product water will also be formed.  MgCl2 in solid form is obtained by the evaporation of the solution.

The molecular equation for the reaction is given below.

Mg(OH)2(s) + 2HCl(aq)MgCl2(aq) + 2H2O(l)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15% glycerin by weight. If the original charge is 500 kg, evaluate; e. The ratio of sucrose to water in the original charge (wt/wt). f. Moles of CO2 evolved. g. Maximum possible amount of ethanol that could be formed. h. Conversion efficiency. i. Per cent excess of excess reactant. Reactions: Inversion reaction: C12H22O11 + H2O →2C6H12O6 Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2 Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3
Show work. don't give Ai generated solution.  How many carbons and hydrogens are in the structure?
13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. cleavage Bond A •CH3 + 26.← Cleavage 2°C. + Bond C +3°C• CH3 2C Cleavage E 2°C. 26. weakest bond Intact molecule Strongest 3°C 20. Gund Largest argest a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. C Weakest bond A Produces Most Bond Strongest Bond Strongest Gund produces least stable radicals Weakest Stable radical b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 13°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. • CH3 methyl radical Formed in Gund A Cleavage c.…

Chapter 4 Solutions

OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)

Ch. 4.4 - Prob. 4.7ECh. 4.4 - Prob. 4.5CCCh. 4.5 - Obtain the oxidation numbers of the atoms in each...Ch. 4.6 - Prob. 4.9ECh. 4.7 - A sample of sodium chloride, NaCl, weighing 0....Ch. 4.7 - How many milliliters of 0. 163 M NaCl are required...Ch. 4.7 - How many moles of sodium chloride should be put in...Ch. 4.8 - You have a solution that is 1.5 M H2SO4 (sulfuric...Ch. 4.8 - Consider the following beakers. Each contains a...Ch. 4.9 - You are given a sample of limestone, which is...Ch. 4.10 - Nickel sulfate, NiSO4, reacts with sodium...Ch. 4.10 - A 5.00-g sample of vinegar is titrated with 0.108...Ch. 4.10 - Consider three flasks, each containing 0.10 mol of...Ch. 4 - Explain why some electrolyte solutions are...Ch. 4 - Define the terms strong electrolyte and weak...Ch. 4 - Explain the terms soluble and insoluble. Use the...Ch. 4 - What are the advantages and disadvantages of using...Ch. 4 - What is a spectator ion? Illustrate with a...Ch. 4 - Prob. 4.6QPCh. 4 - Prob. 4.7QPCh. 4 - Describe in words how you would prepare pure...Ch. 4 - Give an example of a neutralization reaction....Ch. 4 - Give an example of a polyprotic acid and write...Ch. 4 - Prob. 4.11QPCh. 4 - Prob. 4.12QPCh. 4 - Why is the product of molar concentration and...Ch. 4 - Describe how the amount of sodium hydroxide in a...Ch. 4 - What is the net ionic equation for the following...Ch. 4 - An aqueous sodium hydroxide solution mixed with an...Ch. 4 - Which of the following compounds would produce the...Ch. 4 - In an aqueous 0.10 M HNO2 solution (HNO2 is a weak...Ch. 4 - The Behavior of Substances in Water Part 1: a...Ch. 4 - Working with Concentration (Molarity Concepts)...Ch. 4 - Prob. 4.21QPCh. 4 - Prob. 4.22QPCh. 4 - You come across a beaker that contains water,...Ch. 4 - Three acid samples are prepared for titration by...Ch. 4 - Would you expect a precipitation reaction between...Ch. 4 - Equal quantities of the hypothetical strong acid...Ch. 4 - Try and answer the following questions without...Ch. 4 - If one mole of the following compounds were each...Ch. 4 - Using solubility rules, predict the solubility in...Ch. 4 - Using solubility rules, predict the solubility in...Ch. 4 - Using solubility rules, decide whether the...Ch. 4 - Using solubility rules, decide whether the...Ch. 4 - Write net ionic equations for the following...Ch. 4 - Write net ionic equations for the following...Ch. 4 - Lead(II) nitrate solution and sodium sulfate...Ch. 4 - Lithium carbonate solution reacts with aqueous...Ch. 4 - Write the molecular equation and the net ionic...Ch. 4 - Write the molecular equation and the net ionic...Ch. 4 - For each of the following, write molecular and net...Ch. 4 - For each of the following, write molecular and net...Ch. 4 - Classify each of the following as a strong or weak...Ch. 4 - Classify each of the following as a strong or weak...Ch. 4 - Complete and balance each of the following...Ch. 4 - Complete and balance each of the following...Ch. 4 - For each of the following, write the molecular...Ch. 4 - For each of the following, write the molecular...Ch. 4 - Prob. 4.47QPCh. 4 - Complete the right side of each of the following...Ch. 4 - Write molecular and net ionic equations for the...Ch. 4 - Write molecular and net ionic equations for the...Ch. 4 - The following reactions occur in aqueous solution....Ch. 4 - The following reactions occur in aqueous solution....Ch. 4 - Write the molecular equation and the net ionic...Ch. 4 - Write the molecular equation and the net ionic...Ch. 4 - Obtain the oxidation number for the element noted...Ch. 4 - Obtain the oxidation number for the element noted...Ch. 4 - Obtain the oxidation number for the element noted...Ch. 4 - Prob. 4.58QPCh. 4 - Determine the oxidation numbers of all the...Ch. 4 - Determine the oxidation numbers of all the...Ch. 4 - In the following reactions, label the oxidizing...Ch. 4 - In the following reactions, label the oxidizing...Ch. 4 - In the following reactions, label the oxidizing...Ch. 4 - In the following reactions, label the oxidizing...Ch. 4 - Balance the following oxidationreduction reactions...Ch. 4 - Balance the following oxidationreduction reactions...Ch. 4 - A sample of 0.0606 mol of iron(III) chloride,...Ch. 4 - A 50.0-mL volume of AgNO3 solution contains 0.0345...Ch. 4 - An aqueous solution is made from 0.798 g of...Ch. 4 - Prob. 4.70QPCh. 4 - What volume of 0.120 M CuSO4 is required to give...Ch. 4 - Prob. 4.72QPCh. 4 - An experiment calls for 0.0353 g of potassium...Ch. 4 - What is the volume (in milliliters) of 0.100 M...Ch. 4 - Heme, obtained from red blood cells, binds oxygen,...Ch. 4 - Insulin is a hormone that controls the use of...Ch. 4 - Prob. 4.77QPCh. 4 - Describe how you would prepare 2.50 102 mL of...Ch. 4 - You wish to prepare 0.12 M HNO3 from a stock...Ch. 4 - Prob. 4.80QPCh. 4 - A 8.50 g sample of KCl is dissolved in 66.0 mL of...Ch. 4 - Calculate the concentrations of each ion present...Ch. 4 - A chemist added an excess of sodium sulfate to a...Ch. 4 - A soluble iodide was dissolved in water. Then an...Ch. 4 - Copper has compounds with copper(I) ion or...Ch. 4 - Gold has compounds containing gold(I) ion or...Ch. 4 - A compound of iron and chlorine is soluble in...Ch. 4 - A 1.345-g sample of a compound of barium and...Ch. 4 - What volume of 0.230 M HNO3 (nitric acid) reacts...Ch. 4 - Prob. 4.90QPCh. 4 - Prob. 4.91QPCh. 4 - How many milliliters of 0.250 M KMnO4 are needed...Ch. 4 - A solution of hydrogen peroxide, H2O2, is titrated...Ch. 4 - Prob. 4.94QPCh. 4 - Magnesium metal reacts with hydrobromic acid to...Ch. 4 - Aluminum metal reacts with perchloric acid to...Ch. 4 - Nickel(II) sulfate solution reacts with sodium...Ch. 4 - Potassium sulfate solution reacts with barium...Ch. 4 - Prob. 4.99QPCh. 4 - Decide whether a reaction occurs for each of the...Ch. 4 - Complete and balance each of the following...Ch. 4 - Prob. 4.102QPCh. 4 - Describe in words how you would do each of the...Ch. 4 - Prob. 4.104QPCh. 4 - Classify each of the following reactions as a...Ch. 4 - Classify each of the following reactions as a...Ch. 4 - Prob. 4.107QPCh. 4 - Prob. 4.108QPCh. 4 - Prob. 4.109QPCh. 4 - Prob. 4.110QPCh. 4 - A stock solution of potassium dichromate, K2Cr2O7,...Ch. 4 - A 71.2-g sample of oxalic acid, H2C2O4, was...Ch. 4 - Prob. 4.113QPCh. 4 - An aqueous solution contains 3.75% NH3 (ammonia)...Ch. 4 - A barium mineral was dissolved in hydrochloric...Ch. 4 - Bone was dissolved in hydrochloric acid, giving...Ch. 4 - Prob. 4.117QPCh. 4 - An antacid tablet has calcium carbonate as the...Ch. 4 - A sample of CuSO45H2O was heated to 110C, where it...Ch. 4 - Prob. 4.120QPCh. 4 - A water-soluble compound of gold and chlorine is...Ch. 4 - A solution of scandium chloride was treated with...Ch. 4 - A 0.608-g sample of fertilizer contained nitrogen...Ch. 4 - An antacid tablet contains sodium hydrogen...Ch. 4 - You order a glass of juice in a restaurant, only...Ch. 4 - Prob. 4.126QPCh. 4 - Prob. 4.127QPCh. 4 - Prob. 4.128QPCh. 4 - Zinc acetate is sometimes prescribed by physicians...Ch. 4 - Arsenic acid, H3AsO4, is a poisonous acid that has...Ch. 4 - When the following equation is balanced by the...Ch. 4 - Identify each of the following reactions as being...Ch. 4 - Prob. 4.133QPCh. 4 - Prob. 4.134QPCh. 4 - A 25-mL sample of 0.50 M NaOH is combined with a...Ch. 4 - What is the molarity of pure water with a density...Ch. 4 - Prob. 4.137QPCh. 4 - How many grams of precipitate are formed if 175 mL...Ch. 4 - Prob. 4.139QPCh. 4 - Potassium hydrogen phthalate (abbreviated as KHP)...Ch. 4 - Lead(II) nitrate reacts with cesium sulfate in an...Ch. 4 - Silver nitrate reacts with strontium chloride in...Ch. 4 - Elemental bromine is the source of bromine...Ch. 4 - Prob. 4.144QPCh. 4 - Prob. 4.145QPCh. 4 - Prob. 4.146QPCh. 4 - Iron forms a sulfide with the approximate formula...Ch. 4 - A transition metal X forms an oxide of formula...Ch. 4 - What volume of a solution of ethanol, C2H6O, that...Ch. 4 - What volume of a solution of ethylene glycol,...Ch. 4 - A 10.0-mL sample of potassium iodide solution was...Ch. 4 - A 25.0-mL sample of sodium sulfate solution was...Ch. 4 - A metal, M, was converted to the sulfate,...Ch. 4 - A metal, M, was converted to the chloride MCl2....Ch. 4 - Phosphoric acid is prepared by dissolving...Ch. 4 - Iron(III) chloride can be prepared by reacting...Ch. 4 - An alloy of aluminum and magnesium was treated...Ch. 4 - An alloy of iron and carbon was treated with...Ch. 4 - Determine the volume of sulfuric acid solution...Ch. 4 - Determine the volume of sodium hydroxide solution...Ch. 4 - The active ingredients of an antacid tablet...Ch. 4 - The active ingredients in an antacid tablet...Ch. 4 - Prob. 4.163QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
How to Calculate Oxidation Numbers Introduction; Author: Tyler DeWitt;https://www.youtube.com/watch?v=-a2ckxhfDjQ;License: Standard YouTube License, CC-BY