Concept explainers
(a)
Interpretation:
Preparations of each of the given compound has to be explained and the molecular equations for each reaction has to be found.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the
(b)
Interpretation:
Preparations of each of the given compound has to be explained and the molecular equations for each reaction has to be found.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between
(c)
Interpretation:
Preparations of each of the given compound has to be explained and the molecular equations for each reaction has to be found.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between
(d)
Interpretation:
Preparations of each of the given compound has to be explained and the molecular equations for each reaction has to be found.
Concept introduction:
A chemical equation is the figurative representation of chemical reaction. In a chemical equation the reactants are in the left side and the products are in the right side. A balanced chemical equation serves as an easy tool for understanding a chemical reaction. There are mainly three types of chemical equations, molecular equations, complete ionic equation and net ionic equation.
In molecular equations the reactants and products are represented as molecular substances, even though they exist as ions in solution phase. The molecular equation for the reaction between
This equation is helpful in understanding the reactants and products involved in the reaction.
In complete ionic equations the electrolytes are represented as its ions. Soluble compounds exist as ions in solution. Complete ionic equation is helpful in understanding the reaction at ionic level. The complete ionic equation for the reaction between
The solid
In net ionic equations the ions that are common in the reactant and product sides( Spectator ions) are cancelled. These spectator ions are not participating in the chemical reactions. The net ionic equation for the reaction between

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
- How many grams of solid NaCN have to be added to 1.5L of water to dissolve 0.18 mol of Fe(OH)3 in the form Fe(CN)63 - ? ( For simplicity, ignore the reaction of CN - ion with water) Ksp for Fe(OH)3 is 2.8E -39, and Kform for Fe(CN)63 - is 1.0E31arrow_forwardDraw the most stable chair conformation of 1-ethyl-1-methylcyclohexane, clearly showing the axial and equatorial substituents. [4] Draw structures corresponding to the following IUPAC name for each of the following compounds; [5] i) 4-Isopropyl-2,4,5-trimethylheptane ii) trans-1-tert-butyl-4-ethylcyclohexane iii) Cyclobutylcycloheptane iv) cis-1,4-di-isopropylcyclohexane (chair conformation) v) 3-Ethyl-5-isobutylnonanearrow_forwardDraw and name molecules that meet the following descriptions; [4] a) An organic molecule containing 2 sp2 hybridised carbon and 1 sp-hybridised carbon atom. b) A cycloalkene, C7H12, with a tetrasubstituted double bond. Also answer question 2 from the imagearrow_forward
- H 14. Draw the line angle form of the following molecule make sure you use the proper notation to indicate spatial positioning of atoms. F F H 15. Convert the following condensed form to line angle form: (CH3)3CCH2COCH2CON(CH2CH3)2arrow_forwardIn a reaction between two reactants A and B, the half-life is the same for both only if(A) the stoichiometry A:B is 1:1.(B) the stoichiometry A:B is 1:2 or 2:1.arrow_forwardIn a reaction between two reactants A and B, the half-life is the same for both.(1) Only if the stoichiometry A:B is 1:1.(2) If the initial quantities of A and B are in their stoichiometric ratios.arrow_forward
- There are 48 pairs of students in the following table. Each pair has quantitatively determined the mass of taurine in a 250 mL can of the popular energy drink marketed as “Munster” using High Performance Liquid Chromatography (HPLC). The class results are presented below: QUESTION: Calculate the measurement of uncertainty and provide the data in a spreadsheet table. Mass of Taurine (mg) Mass of Taurine (mg) (Table continued) 152.01 152.23 151.87 151.45 154.11 152.64 152.98 153.24 152.88 151.45 153.49 152.48 150.68 152.33 151.52 153.63 152.48 151.68 153.17 153.40 153.77 153.67 152.34 153.16 152.57 153.02 152.86 151.50 151.23 152.57 152.72 151.54 146.47 152.38 152.44 152.54 152.53 152.54 151.32 152.87 151.24 153.26 152.02 152.90 152.87 151.49 152.46 152.58arrow_forward1. Predict the organic product(s) of the following reactions. Assume excess of reagents unless otherwise noted. a) &l BH3 •THF b) 1) NaOH 2) H3O+ solve d) ala 1) EtMgBr 2) H3O+ e) H2N سكر CuLi NH2 1) SOCI2 2) EtMgBr 3) H3O+ NC H3O+ Δarrow_forwardThere are 48 pairs of students in the following table. Each pair has quantitatively determined the mass of taurine in a 250 mL can of the popular energy drink marketed as “Munster” using High Performance Liquid Chromatography (HPLC). The class results are presented below: QUESTION: Summarise and report these results including an indication of measurement uncertainty. In both calculation samples calculate if an outlier is present, max value, number of samples, mean, standard deviation, g (suspect), g (critical) and t (critical). Mass of Taurine (mg) Mass of Taurine (mg) (Table continued) 152.01 152.23 151.87 151.45 154.11 152.64 152.98 153.24 152.88 151.45 153.49 152.48 150.68 152.33 151.52 153.63 152.48 151.68 153.17 153.40 153.77 153.67 152.34 153.16 152.57 153.02 152.86 151.50 151.23 152.57 152.72 151.54 146.47 152.38 152.44 152.54 152.53 152.54 151.32…arrow_forward
- Indicate the rate expressions for reactions that have order 0, 1, and 2.arrow_forwardPROBLEMS Q1) Label the following salts as either acidic, basic, or neutral a) Fe(NOx) c) AlBr b) NH.CH COO d) HCOON (1/2 mark each) e) Fes f) NaBr Q2) What is the pH of a 0.0750 M solution of sulphuric acid?arrow_forward8. Draw all the resonance forms for each of the fling molecules or ions, and indicate the major contributor in each case, or if they are equivalent (45) (2) -PH2 سمة مدarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





