Fundamentals Of Thermodynamics
10th Edition
ISBN: 9781119494966
Author: Borgnakke, C. (claus), Sonntag, Richard Edwin, Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.89P
A
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water is heated in a closed container with rigid walls that is a perfect cube (1 m x 1 m x 1
m). The initial volume of the water (liquid + vapor) is 1 m'. The initial temperature of
the water is 100 °C and it has a quality of 0.3. It is heated until it reaches a final pressure
of 700 kPa.
a. Sketch the process on the P V diagram.
b. What is the work done by the water during this heating process in kJ?
c. What is the final temperature of the water?
d. What is the heat required in order for this process to occur in kJ?
P
V
1.5 kg of an ideal gas undergoes a process wherein the pressure decreases from 280 kPaa to 140 kPaa, while the volume increases from 0.045 cu.m to 0.135 cu.m. If the increase in internal energy for the process is 275 kJ and Cv =1.235 kJ/kg.K, find the change in enthalpy.
0.56 kg of water in a piston cylinder device as shown initially the water is at T, = 120 °C with
volume V, = 36 L (State 1). Heat is then added such that all the water in the cylinder is
saturated vapor and the piston just touched the spring without exerted any force on the spring
(State 2). Then additional heat is added to the system such that the temperature is T, 600 °C
and the pressure is P,= 400 kPa (State 3).
3
Po
3
1) Find the total work (from state 1 to state 3, in kW).
O 147.73
2)
O Not listed
Qin
111.16
133.48
107 23
156.11
125.24
2) Find the total heat transfer for the process (from state 1 to state 3, in kW).
1424.6
O Not listed
O 1486.0
O 1585.4
Chapter 4 Solutions
Fundamentals Of Thermodynamics
Ch. 4 - A temperature difference drives a heat transfer...Ch. 4 - What is the effect can be felt upstream in a flow?Ch. 4 - Prob. 4.3PCh. 4 - Air at 500 kPa is expanded to l00 kPa in two...Ch. 4 - A windmill takes out a fraction of the wind...Ch. 4 - An underwater turbine extracts a fraction of the...Ch. 4 - A liquid water turbine at the bottom of a dam...Ch. 4 - You blow a balloon up with air. What kinds of work...Ch. 4 - Storage tanks of cryogenic liquids (O2,N2,CH4) are...Ch. 4 - A large brewery has a pipe of cross-sectional area...
Ch. 4 - A pool is to be filled with 60m3 water from a...Ch. 4 - Natural gas, CH4 , flowing in a 5cm -diameter pipe...Ch. 4 - A boiler receives a constant flow of 5000kg/h...Ch. 4 - A 0.6m -diameter household fan takes air in at...Ch. 4 - Liquid water at 15°C flows out of nozzle straight...Ch. 4 - A nozzle receives an ideal gas flow with a...Ch. 4 - In a jet engine a flow afar at 1000K,200kPa, and...Ch. 4 - The wind is blowing horizontally at 30m/s in a...Ch. 4 - A meteorite hits the upper atmosphere at 3000m/s ,...Ch. 4 - Carbon dioxide is throttled from 20C,2000kPa to...Ch. 4 - Saturated liquid R-410A at 25°C is throttled to...Ch. 4 - Carbon dioxide used as a natural refrigerant flows...Ch. 4 - Liquid water at 180C,2000kPa is throttled into a...Ch. 4 - Methane at 1MPa,250K is throttled through a valve...Ch. 4 - A steam turbine has an n1et of 3kg/s water at 1200...Ch. 4 - Air at 20m/s,1500K,875kPa with 5kg/s flows into a...Ch. 4 - Solve the previous problem using Table A.7.Ch. 4 - A wind turbine can extract at most a fraction...Ch. 4 - A liquid water turbine receives 2kg/s water at...Ch. 4 - A small high-speed turbine operating on compressed...Ch. 4 - Hoover Dam across the Colorado River dams up Lake...Ch. 4 - What is the specific work one can get from Hoover...Ch. 4 - R-410A in a commercial refrigerator flows into the...Ch. 4 - A compressor brings nitrogen from 100kPa,290K to...Ch. 4 - A refrigerator uses the natural refrigerant carbon...Ch. 4 - A factory generates compressed air from l00kPa,17C...Ch. 4 - A compressor brings R-134a from...Ch. 4 - An exhaust fan in a building should be able to...Ch. 4 - Prob. 4.39PCh. 4 - The air conditioner in a house or a car has a...Ch. 4 - A boiler section boils 3kg/s saturated liquid...Ch. 4 - A superheater takes 3kg/s saturated water vapor in...Ch. 4 - Carbon dioxide enters a steady-state, steady-flow...Ch. 4 - Find the heat transfer in Problem 4.13.Ch. 4 - A chiller cools liquid water for air-conditioning...Ch. 4 - Saturated liquid nitrogen at 600 kPa enters a...Ch. 4 - Prob. 4.47PCh. 4 - Liquid nitrogen at 90K,400kPa flows into a probe...Ch. 4 - Liquid glycol flows around an engine, cooling it...Ch. 4 - An irrigation pump takes water from a river at...Ch. 4 - A pipe from one building to another flows water at...Ch. 4 - A river flowing at 0.5m/s across a 1-m-high and...Ch. 4 - A cutting tool uses a nozzle that generates a...Ch. 4 - An adiabatic steam turbine in a power plant...Ch. 4 - Prob. 4.55PCh. 4 - A steam turbine receives steam from two boilers...Ch. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - A condenser (heat exchanger) brings 1kg/s water...Ch. 4 - Steam at 500kPa,300C is used to heat cold water at...Ch. 4 - A dual-fluid heat exchanger has 5kg/s water...Ch. 4 - An energy recovery heat exchanger, shown in Fig....Ch. 4 - Do the previous problem if the water is heated to...Ch. 4 - In a co-flowing (same-direction) heat exchanger,...Ch. 4 - An a water counter flowing heat exchanger has one...Ch. 4 - An automotive radiator has glycol at 95°C enter...Ch. 4 - Prob. 4.67PCh. 4 - Two air flows are combined to a single flow. One...Ch. 4 - An open feedwater heater in a power plant heats...Ch. 4 - A de-superheater has a flow of ammonia of 1.5kg/s...Ch. 4 - A mixing chamber with heat transfer receives 2kg/s...Ch. 4 - A geothermal supply of hot water at 500kPa,150C is...Ch. 4 - A flow of 5kg/s water at l00kPa,20C should be...Ch. 4 - A two-stage compressor takes nitrogen ri at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.76PCh. 4 - A modern jet engine has a temperature after...Ch. 4 - A proposal is made to use a geothermal supply of...Ch. 4 - Prob. 4.79PCh. 4 - An initially empty canister of volume 0.2m3 is...Ch. 4 - Repeat the previous problem but use the line...Ch. 4 - A tank contains 1m3 air at 100kPa,300K . A pipe...Ch. 4 - A 2.5L tank initially is empty, and we want to...Ch. 4 - An insulated 2m3 tank is to be charged with R-134a...Ch. 4 - Repeat the previous problem if the valve is closed...Ch. 4 - A 3m3 ? cryogenic storage tank contains nitrogen...Ch. 4 - A nitrogen line at 300K,0.5MPa , shown in Fig....Ch. 4 - Prob. 4.88PCh. 4 - A 200L tank (see Fig. P4.89) initially contains...Ch. 4 - A 1-L can of R-410A is at room temperature, 20°C,...Ch. 4 - Steam at 3MPa,400C enters a turbine with a...Ch. 4 - In a glass factory a 2m -wide sheet of glass at...Ch. 4 - Assume a setup similar to that of the previous...Ch. 4 - Three a flows, all at 200 kPa, e connected to the...Ch. 4 - A 1m3,40kg rigid steel tank contains air at 500...Ch. 4 - An insulated spring-loaded piston/cylinder device,...Ch. 4 - A piston/cyl. setup like Fig. 4.96 is such that at...Ch. 4 - A mass-loaded piston/cylinder shown in Fig. P4.98,...Ch. 4 - A flow of 2kg/s of water at 500kPa,20C is heated...Ch. 4 - Refrigerant R-410A at l00psia,60F flows at...Ch. 4 - A pool is to be filled with 2500ft3 water from a...Ch. 4 - Liquid water at 60 F flows out of a nozzle...Ch. 4 - Prob. 4.103EPCh. 4 - Prob. 4.104EPCh. 4 - Nitrogen gas flows into a convergent nozzle at...Ch. 4 - A meteorite hits the upper atmosphere at 10000ft/s...Ch. 4 - Refrigerant R-410A flows out of a cooler at...Ch. 4 - Saturated vapor R-410A at 75 psia is throttled to...Ch. 4 - A wind turbine can exact at most a fraction 16/27...Ch. 4 - A liquid water turbine receives 4Ibm/s water at...Ch. 4 - Prob. 4.111EPCh. 4 - What is the specific work one can get from Hoover...Ch. 4 - A small-speed turbine operating on compressed air...Ch. 4 - R.410A in a commercial refigerator flows into the...Ch. 4 - An exhaust fan in a building should be able to...Ch. 4 - Carbon dioxide gas enters a steady-state,...Ch. 4 - Prob. 4.117EPCh. 4 - Liquid glycol flows around an engine, cooling t as...Ch. 4 - Prob. 4.119EPCh. 4 - Prob. 4.120EPCh. 4 - Do the previous problem if the water is just...Ch. 4 - A dual-fluid heat exchanger has l0Ibm/s water...Ch. 4 - Steam at 80psia,600F is used to heat cold water at...Ch. 4 - Prob. 4.124EPCh. 4 - Two flows of air are both at 30 psia one has...Ch. 4 - A de-superheater has a flow of ammonia of 3Ibm/s...Ch. 4 - A two-stage compressor takes nitrogen n at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.129EPCh. 4 - Prob. 4.130EPCh. 4 - A tank contains l0ft3 of air at 15psia,540R . A...Ch. 4 - Prob. 4.132EPCh. 4 - In a glass factory a 6 ft-wide sheet of glass at...Ch. 4 - A mass-loaded piston/cylinder containing air is at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q2. It includes wet vapor of R717 with a quality of 0.2 at a temperature of 15oC in a frictionless and well insulated piston-cylinder system shown in Fig. 2. Refrigerant is mixed with a propeller and initially occupies a volume of 5 L. When the pressure inside the cylinder reaches 800 kPa, the pin holding the cylinder will be broken and the propeller will stop, simultaneously. The piston moves upward after breaking the pin up to the point where equilibrium condition is obtained. Refrigerant is at saturated condition and a temperature of -15oC when the system reaches thermodynamic equilibrium. Calculate (a) the work done by the propeller, (b) The work done by the refrigerant after the pin is broken, and (c) the final volume of the refrigerant, (d) the entropy change of the refrigerant, (e) the entropy generation through this process.arrow_forwardWater at P1 = 200 kPa with a quality of 25% has its temperature raised 20 oC (T2 = T1+20 0C) in a constant pressure process. What is the initial (v1) and final (v2) specific volumes?arrow_forwardA rigid vessel with a volume of 3.0 m3 contains a fixed mass of H2O. Initially, the temperature is 50°C and the H2O is a mixture of steam and liquid water with quality of 0.60.a. Find the mass of H2O in the tank and the pressure.b. Find the temperature to which the fluid must be raised so that all of the H2O in the tank becomes saturated vapor.arrow_forward
- 6. Two kilograms of water is contained in a piston-cylinder loaded with a linear spring and the outside atmosphere. Initial the water is at 200 kPa, and V = 0.2 m³. Heat is now added until the volume grows to 0.8 m³, and the temperature increases to 600°C. Determine the following: (a) Initial phase of the system (calculate quality if appropriate). (b) Find the final pressure of the system. Show how you determine the final state and which table to look for the pressure. (c) Show the process on a P-v diagram and explain why the process is linear.arrow_forwardHi, pls help me solve this problem. Thank you so much.arrow_forwardA piston-cylinder device initially contains 0.8m3 of saturated water vapor at 250 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 300 kPa is required to move it. Heat is now slowly transferred to the steam until the volume doubles. a. Indicate knowns and unknows for each state as well as what type ofprocess is performed to get from one state to another. State anyassumptionsb. Determine the final temperaturec. Determine the work done during the processd. Show the process on a P-v diagram with respect to saturation linese. Determine the total heat transferred during this processarrow_forward
- Must answer all fove questions. Dont say only 3 will be answered.arrow_forwardSolve these two maths showing the processes too in a well defined way.arrow_forwardFive pounds of mass of water are contained within a cylinder-piston system. The initial temperature is 220 ° F, initially there are equal masses of liquid and vapor. The system is heated at constant pressure until all the liquid evaporates; subsequently, the system is cooled to saturated steam at T = 120 ° F. Calculate Q and W for each stage of the process.arrow_forward
- A piston-cylinder device contains an ideal gas of nitrogen. At the initial state, the volume is V₁ = 1.00 m³, the pressure is p₁= 400.00 kPa, the temperature is T₁=300.00 K. An electric heater within the device is turned on for a time of At = 5.00 min. The current is I = 3.00 A, and the source voltage is V = 120.00 V. During the heating process, the gas expands, and a heat loss of Qout = 2.80 kJ occurs. The gas constant is R = 0.297 kPa m³/(kg-K), and the room temperature specific heat at constant pressure is cp =1.039 kJ/(kg-K). Calculate the final state temperature, T2. (K) Gasarrow_forwardConsider a balloon contains initially 40 liter of Helium at 105 kPa and 20 oC, The balloonis connected to a supply line of helium through a valve that is opened allowing helium tofurther fill the balloon to 150 kPa such that pressure in the balloon is expressed as: P =750 V0.5– 45, Where P is in kPa and V is m3. Considering Helium as ideal gas:a- Find the mass of Helium entered the balloon if the process is isothermal.b- Find the work done during the process.arrow_forwardA quantity of ideal gas is contained by a moving piston within a leak tight cylinder with initial volume V₁=1lt at pressure P₁=7.19bars. The piston moves to a new position allowing the gas to expand at constant temperature to V₂=2lt. Ignore the pressure outside the piston and changes in the kinetic and potential energy. Calculate the work produced by the gas (Absolute value). Present your answer in kilo Joules (kJ).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license