Fundamentals Of Thermodynamics
10th Edition
ISBN: 9781119494966
Author: Borgnakke, C. (claus), Sonntag, Richard Edwin, Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 4.54P
An adiabatic steam turbine in a power plant receives
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water vapor enters a turbine at 6 MPa pressure and 800 ° C temperature and leaves at 20 kPa pressure. Since the heat loss from the turbine with an izanopic efficiency of 95% is 49.7 kJ / kg,
a) Find the actual amount of work (kj / kg) produced by the turbine.
b) Find the reversible work (kJ / kg) between the inlet and outlet of the turbine. (Take the ambient temperature 20 ° C.)
Problem 4.01. A carnot refrigerator (carnot cycle heat pump in reverse) operating between Th and Te is
used to cool and freeze a bottle of water, volume V, at a temperature To < Th to freezing temperature T
(known density Pw, heat capacity cw). (a) Find the work required to cool and freeze the water. (b) Find
the change in entropy in the heat baths, and use it to place a limit on the change in entropy of the water
(without calculating the entropy change in the water).
The C.O.P. of a carnot refrigerator:
KR=
Qc
=
W
Te
Th-Te
A reversible heat engine absorbs 3000 kJ
from a reservoir at 1000 K and rejects 2500
kJ at 500 K. Find the heat interchanged
with the reservoir at 300 K and the net
work output of the engine.
Chapter 4 Solutions
Fundamentals Of Thermodynamics
Ch. 4 - A temperature difference drives a heat transfer...Ch. 4 - What is the effect can be felt upstream in a flow?Ch. 4 - Prob. 4.3PCh. 4 - Air at 500 kPa is expanded to l00 kPa in two...Ch. 4 - A windmill takes out a fraction of the wind...Ch. 4 - An underwater turbine extracts a fraction of the...Ch. 4 - A liquid water turbine at the bottom of a dam...Ch. 4 - You blow a balloon up with air. What kinds of work...Ch. 4 - Storage tanks of cryogenic liquids (O2,N2,CH4) are...Ch. 4 - A large brewery has a pipe of cross-sectional area...
Ch. 4 - A pool is to be filled with 60m3 water from a...Ch. 4 - Natural gas, CH4 , flowing in a 5cm -diameter pipe...Ch. 4 - A boiler receives a constant flow of 5000kg/h...Ch. 4 - A 0.6m -diameter household fan takes air in at...Ch. 4 - Liquid water at 15°C flows out of nozzle straight...Ch. 4 - A nozzle receives an ideal gas flow with a...Ch. 4 - In a jet engine a flow afar at 1000K,200kPa, and...Ch. 4 - The wind is blowing horizontally at 30m/s in a...Ch. 4 - A meteorite hits the upper atmosphere at 3000m/s ,...Ch. 4 - Carbon dioxide is throttled from 20C,2000kPa to...Ch. 4 - Saturated liquid R-410A at 25°C is throttled to...Ch. 4 - Carbon dioxide used as a natural refrigerant flows...Ch. 4 - Liquid water at 180C,2000kPa is throttled into a...Ch. 4 - Methane at 1MPa,250K is throttled through a valve...Ch. 4 - A steam turbine has an n1et of 3kg/s water at 1200...Ch. 4 - Air at 20m/s,1500K,875kPa with 5kg/s flows into a...Ch. 4 - Solve the previous problem using Table A.7.Ch. 4 - A wind turbine can extract at most a fraction...Ch. 4 - A liquid water turbine receives 2kg/s water at...Ch. 4 - A small high-speed turbine operating on compressed...Ch. 4 - Hoover Dam across the Colorado River dams up Lake...Ch. 4 - What is the specific work one can get from Hoover...Ch. 4 - R-410A in a commercial refrigerator flows into the...Ch. 4 - A compressor brings nitrogen from 100kPa,290K to...Ch. 4 - A refrigerator uses the natural refrigerant carbon...Ch. 4 - A factory generates compressed air from l00kPa,17C...Ch. 4 - A compressor brings R-134a from...Ch. 4 - An exhaust fan in a building should be able to...Ch. 4 - Prob. 4.39PCh. 4 - The air conditioner in a house or a car has a...Ch. 4 - A boiler section boils 3kg/s saturated liquid...Ch. 4 - A superheater takes 3kg/s saturated water vapor in...Ch. 4 - Carbon dioxide enters a steady-state, steady-flow...Ch. 4 - Find the heat transfer in Problem 4.13.Ch. 4 - A chiller cools liquid water for air-conditioning...Ch. 4 - Saturated liquid nitrogen at 600 kPa enters a...Ch. 4 - Prob. 4.47PCh. 4 - Liquid nitrogen at 90K,400kPa flows into a probe...Ch. 4 - Liquid glycol flows around an engine, cooling it...Ch. 4 - An irrigation pump takes water from a river at...Ch. 4 - A pipe from one building to another flows water at...Ch. 4 - A river flowing at 0.5m/s across a 1-m-high and...Ch. 4 - A cutting tool uses a nozzle that generates a...Ch. 4 - An adiabatic steam turbine in a power plant...Ch. 4 - Prob. 4.55PCh. 4 - A steam turbine receives steam from two boilers...Ch. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - A condenser (heat exchanger) brings 1kg/s water...Ch. 4 - Steam at 500kPa,300C is used to heat cold water at...Ch. 4 - A dual-fluid heat exchanger has 5kg/s water...Ch. 4 - An energy recovery heat exchanger, shown in Fig....Ch. 4 - Do the previous problem if the water is heated to...Ch. 4 - In a co-flowing (same-direction) heat exchanger,...Ch. 4 - An a water counter flowing heat exchanger has one...Ch. 4 - An automotive radiator has glycol at 95°C enter...Ch. 4 - Prob. 4.67PCh. 4 - Two air flows are combined to a single flow. One...Ch. 4 - An open feedwater heater in a power plant heats...Ch. 4 - A de-superheater has a flow of ammonia of 1.5kg/s...Ch. 4 - A mixing chamber with heat transfer receives 2kg/s...Ch. 4 - A geothermal supply of hot water at 500kPa,150C is...Ch. 4 - A flow of 5kg/s water at l00kPa,20C should be...Ch. 4 - A two-stage compressor takes nitrogen ri at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.76PCh. 4 - A modern jet engine has a temperature after...Ch. 4 - A proposal is made to use a geothermal supply of...Ch. 4 - Prob. 4.79PCh. 4 - An initially empty canister of volume 0.2m3 is...Ch. 4 - Repeat the previous problem but use the line...Ch. 4 - A tank contains 1m3 air at 100kPa,300K . A pipe...Ch. 4 - A 2.5L tank initially is empty, and we want to...Ch. 4 - An insulated 2m3 tank is to be charged with R-134a...Ch. 4 - Repeat the previous problem if the valve is closed...Ch. 4 - A 3m3 ? cryogenic storage tank contains nitrogen...Ch. 4 - A nitrogen line at 300K,0.5MPa , shown in Fig....Ch. 4 - Prob. 4.88PCh. 4 - A 200L tank (see Fig. P4.89) initially contains...Ch. 4 - A 1-L can of R-410A is at room temperature, 20°C,...Ch. 4 - Steam at 3MPa,400C enters a turbine with a...Ch. 4 - In a glass factory a 2m -wide sheet of glass at...Ch. 4 - Assume a setup similar to that of the previous...Ch. 4 - Three a flows, all at 200 kPa, e connected to the...Ch. 4 - A 1m3,40kg rigid steel tank contains air at 500...Ch. 4 - An insulated spring-loaded piston/cylinder device,...Ch. 4 - A piston/cyl. setup like Fig. 4.96 is such that at...Ch. 4 - A mass-loaded piston/cylinder shown in Fig. P4.98,...Ch. 4 - A flow of 2kg/s of water at 500kPa,20C is heated...Ch. 4 - Refrigerant R-410A at l00psia,60F flows at...Ch. 4 - A pool is to be filled with 2500ft3 water from a...Ch. 4 - Liquid water at 60 F flows out of a nozzle...Ch. 4 - Prob. 4.103EPCh. 4 - Prob. 4.104EPCh. 4 - Nitrogen gas flows into a convergent nozzle at...Ch. 4 - A meteorite hits the upper atmosphere at 10000ft/s...Ch. 4 - Refrigerant R-410A flows out of a cooler at...Ch. 4 - Saturated vapor R-410A at 75 psia is throttled to...Ch. 4 - A wind turbine can exact at most a fraction 16/27...Ch. 4 - A liquid water turbine receives 4Ibm/s water at...Ch. 4 - Prob. 4.111EPCh. 4 - What is the specific work one can get from Hoover...Ch. 4 - A small-speed turbine operating on compressed air...Ch. 4 - R.410A in a commercial refigerator flows into the...Ch. 4 - An exhaust fan in a building should be able to...Ch. 4 - Carbon dioxide gas enters a steady-state,...Ch. 4 - Prob. 4.117EPCh. 4 - Liquid glycol flows around an engine, cooling t as...Ch. 4 - Prob. 4.119EPCh. 4 - Prob. 4.120EPCh. 4 - Do the previous problem if the water is just...Ch. 4 - A dual-fluid heat exchanger has l0Ibm/s water...Ch. 4 - Steam at 80psia,600F is used to heat cold water at...Ch. 4 - Prob. 4.124EPCh. 4 - Two flows of air are both at 30 psia one has...Ch. 4 - A de-superheater has a flow of ammonia of 3Ibm/s...Ch. 4 - A two-stage compressor takes nitrogen n at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.129EPCh. 4 - Prob. 4.130EPCh. 4 - A tank contains l0ft3 of air at 15psia,540R . A...Ch. 4 - Prob. 4.132EPCh. 4 - In a glass factory a 6 ft-wide sheet of glass at...Ch. 4 - A mass-loaded piston/cylinder containing air is at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 4: In the pump of a steam power plant, saturated liquid at 75 kPa pressure is compressed to 3 MPa pressure. Since the adiabatic efficiency of the pump is 85%, find the work consumed by the pump.arrow_forwardSteam at 6000 kPa, 400 degrees Celcius expands in a Rankine Turbine to 0.038 MPa. For 136 kg/s of steam. For an actual turbine with the same specifications, the brake steam rate is 4.80 kg/kwhand the driven electric generator has an efficiency of 93%. Find Brake Thermal efficiency. (brake work over heat added)arrow_forwardSteam at 5.2 MPa, 4000C expands in a Rankine turbine to 0.036MPa. For 136 kg/s of steam, determine the work, the thermal efficiency, and the steam rate (a) fot the cycle(b) for the turbine, (c) for an actual turbine with the same specifications, the brake steam rate is 4.80 kg/kwh ang the driven electric generator has an efficiency of 93%, Find brake thermal efficiency , brake engine efficiency, combined work, and quality or temperature of exhaust steam. Don't answer the given problem, just give me the schematic diagram and T-S diagram of the given problemarrow_forward
- A turbine, operating under steady- flow conditions, reccives 1000 kg/min of stcam. At the inlet, the pressure is 30 bar, the temperature is 400°C, the velocity At the exit, the pressure is 0.7 bar, the quality is (100%), and the velocity is 100 m/s. If the turbine produced a power output of 9300 KW. By using the energy balance of open system with sutable tables, answer the following: (a) What are the main assumptions ? (b) Calculate dh, AKe ? (c) Calculate the rate of heat transfer between the turbine and surroundings, in kW.arrow_forwardGiven 0.603MW electrical power supplied to a boiler when the temperature of the entering water is 20 C and the exiting temperature is 89 C. The flow of.the pressured water is 2 Kg/s. There is a negligible pressure drop through this boiler and it operates at a constant pressure of 3 bars. The specific heat is c = 4,370 J/(Kg K). a) Calculate the total rate of entropy production b) Calculate the total rate of exergy destruction (W). The dead state temperature is 293.2 K and pressure is 1 bar. c) Calculate the mass flowrate of fuel (natural gas, CH4) required to heat the water flow to the conditions of the problem if the electrical heating device is replaced with a gas fired boiler. The high heating value (HHV) of the fuel is 50.02 MJ/kg.arrow_forwardSteam enters a continuous flow turbine at a pressure of 8 MPa and a temperature of 450 ℃ and reaches a pressure of 70 kPa it is expanding. The mass flow rate of the steam is 200000 kg/hour and it is in the form of saturated steam at the outlet. By accepting the ambient temperature, 25℃ and pressure 100 kPa; a) The power potential of the steam at the inlet conditions b) Can you find the turbine power output for the situation where there are no irreversibilities? (Kinetic and potential energy ignore the changes).arrow_forward
- An adiabatic, steam (H2O) turbine operates in a steady-state, steady-flow manner. With a single inflow and outflow for a mass flow in and out of the turbine. Pressure going into the turbine is 10MPa. The Power output by the turbine is +2045 kWatt and the mass flow rate is 5 kg/sec. Find the Temperature into the turbine.arrow_forwardPlease don't provide handwritten solution .....arrow_forward4. During the execution of a reversible non-flow process the work is -156.2 KJ if VI=0.845 and the pressure varies as P=-730 V +690 KPa, where volume V is in m?arrow_forward
- A certain SSSF turbine (irreversible and adiabatic) operates on air with the following conditions, Inflow: Ti=1000 K, Pi = 13223.07354 kPa Outflow (actual): Te = 402.3904382 K Find the actual specific work output of the turbine, wt in KJ/kg. (Assume single inflow/outflow, neglect change in KE and PE. Assume constant specific heats in this problem, with Cp0 =1.004 kJ/(K*kg) and k= 1.4. Next if the hypothetical ideal, reversible adiabatic (isentropic) specific work output of the turbine is wt= +800 Kj/kg: Find the isentropic efficiency of the turbine, outflow pressure Pe in kPa and finally what is the ratio of the outflow pressure of the actual turbine to the same pressure for the ideal turbine.arrow_forward· A closed gaseous system undergoes a reversible process with constant pressure of 200kpa. 2500 kJ of heat is rejected, and the volume changes from 5m3 to 2m3. Find the change in internal energyarrow_forwardThe subject is Thermodynamics 1 Processes of Ideal Gasesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY