
Concept explainers
(a)
Interpretation:
The most stable chair conformation of the given molecule is to be drawn.
Concept introduction:
The stability of chair conformation of the six member ring having heteroatom is the same as the cyclohexane ring. The presence of heteroatom in the ring is at any place which is similar to carbon.
The most stable chair confirmation of disubstituted cyclohexane is the one in which the substituents experience the least amount of strain. This is when the larger substituent occupies an equatorial position. In disubstituted cyclohexane, the substituents which are on the same side are cis to each other whereas substituents which are on the opposite side of the ring are trans to each other. If there is more than one substituent attached, the conformation in which maximum substituents are in equatorial position is favored and is more stable. Substituents that are trans to each other in one chair conformation remains trans after the chair flip.
(b)
Interpretation:
The most stable conformation of the given molecule is to be drawn.
Concept introduction:
The stability of chair conformation of the six member ring having heteroatom is the same as that of the cyclohexane ring. The presence of heteroatom in the ring, which is at any place, is similar to carbon.
The most stable chair conformation of disubstituted cyclohexane is the one in which the substituents experience the least amount of strain. This is when the larger substituent occupies an equatorial position. In disubstituted cyclohexane, the substituents which are on the same side are cis to each other whereas substituents which are on the opposite side of the ring are trans to each other. If there is more than one substituent attached, then the conformation in which maximum substituents are in equatorial position is favored and is more stable. Substituents that are trans to each other in one chair conformation remains trans after the chair flip.
(c)
Interpretation:
The most stable conformation of the given molecule is to be drawn.
Concept introduction:
The stability of chair conformation of the six member ring having heteroatom is the same as the cyclohexane ring. The presence of heteroatom in the ring is at any place which is similar to carbon.
The most stable chair conformation of disubstituted cyclohexane is the one in which the substituents experience the least amount of strain. This is when the larger substituent occupies an equatorial position. In disubstituted cyclohexane, the substituents which are on the same side are cis to each other whereas substituents which are on the opposite side of the ring are trans to each other. If there is more than one substituent attached, then the conformation in which maximum substituents are in equatorial position is favored and is more stable. Substituents that are trans to each other in one chair conformation remains trans after the chair flip.

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
Organic Chemistry: Principles and Mechanisms (Second Edition)
- First image: Why can't the molecule C be formed in those conditions Second image: Synthesis for lactone C its not an examarrow_forwardFirst image: I have to show the mecanism for the reaction on the left, where the alcohol A is added fast in one portion Second image: I have to show the mecanism of the reaction at the bottom. Also I have to show by mecanism why the reaction wouldn't work if the alcohol was primaryarrow_forwardFirst image: I have to explain why the molecule C is never formed in those conditions. Second image: I have to propose a synthesis for the lactone Aarrow_forward
- 20.44 The Diels-Alder reaction is not limited to making six-membered rings with only car- bon atoms. Predict the products of the following reactions that produce rings with atoms other than carbon in them. OCCH OCCH H (b) CH C(CH₂)s COOCH མ་ནས་བ (c) N=C H -0.X- (e) H C=N COOCHS + CH2=CHCH₂ →→arrow_forwardGiven the attached data, provide the drawing for the corresponding structure.arrow_forwardno Ai walkthroughsarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





